Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 760, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874795

RESUMEN

BACKGROUND: The genus Corynorhinus is composed of four recognized species: C. rafinesquii, C. townsendii, C. mexicanus, and C. leonpaniaguae, the latter two being endemic to Mexico. According to the IUCN, C. mexicanus is considered "Near Threatened", as its populations are dwindling and habitats are affected by anthropogenic disturbance. Corynorhinus leonpaniaguae has not been assigned to an IUCN Red List risk category due to its recent description. METHODS AND RESULTS: In this study, the mitochondrial genomes of C. mexicanus and C. leonpaniaguae were assembled and characterized in detail. The mitochondrial genomes (mtDNA) of C. mexicanus and C. leonpaniaguae have lengths of 16,470 and 16,581 bp respectively, with a predominant nucleotide usage of adenine (31.670% and 31.729%, respectively) and thymine (26.15% and 26.18%, respectively). The mtDNA of C. mexicanus and C. leonpaniaguae is composed of 37 coding and non-coding elements: 22 transfer RNAs (tRNA), 13 protein-coding genes (PCGs), two ribosomal RNAs and a non-coding region, the control region, which has a length of 933 bp and 1,149 bp, respectively. All tRNAs exhibited a cloverleaf secondary structure, with the exception of trn-Ser1 which showed a deletion of the dihydrouridine arm in the two species. All PCGs are subjected to purifying selection, with atp8 being the gene showing the highest Ka/Ks value. CONCLUSIONS: These are the first whole mitogenomic resources developed for C. mexicanus and C. leonpaniaguae and enhance our knowledge of the ecology of these species and aid in their conservation.


Asunto(s)
Quirópteros , Genoma Mitocondrial , ARN de Transferencia , Animales , Genoma Mitocondrial/genética , Quirópteros/genética , México , ARN de Transferencia/genética , Filogenia , ADN Mitocondrial/genética , ARN Ribosómico/genética
2.
Gene ; 918: 148492, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38649060

RESUMEN

In the species-rich family Vespertilionidae, vesper yellow bats in the genus Rhogeessa include eleven species, three of them endemic to Mexico. These insectivorous bats provide important ecosystem services, including pest control. Even though some aspects of their biology are well- known, only a few genomic resources are available for these species, which limits our understanding of their biology. In this study, we assembled and annotated the mitochondrial genome of four species: R. aenea, R. genowaysi, R. mira, and R. parvula. We generated a phylomitogenomic hypothesis based on translated protein-coding genes for a total of 52 species in the family Vespertilionidae and examined the phylogenetic position of the genus Rhogeessa and species within the family. The AT-rich mitogenomes of R. aenea, R. genowaysi, R. mira, and R. parvula are 16,763, 16,781, 16,807, and 16,794 pb in length, respectively. Each studied mitogenome encodes 13 Protein Coding Genes (PCGs), 22 transfer RNA genes, and 2 rRNA genes, and contains a putative control region (CR). All tRNAs exhibit a 'cloverleaf' secondary structure, except tRNA-Serine-1 that lacked the DHU arm in all studied mitogenomes. Selective pressure analyses indicated that all protein-coding genes are exposed to purifying selection. The phylomitogenomic analysis supported the monophyletic status of the family Vespertilionidae, confirmed the placement of Rhogeessa within the tribe Antrozoini, and clarified phylogenetic relationships within and among subfamilies and tribes in this family. Our results indicate that phylomitogenomics are useful to explore the evolutionary history of vesper bats. The assembly and comprehensive analysis of mitochondrial genomes offer the potential to generate molecular references and resources beneficial for genetic analyses aimed at understanding the ecology and evolution of these remarkable bats.


Asunto(s)
Quirópteros , Genoma Mitocondrial , Filogenia , Animales , Quirópteros/genética , Quirópteros/clasificación , México , ARN de Transferencia/genética , Genómica/métodos
3.
PLoS One ; 19(2): e0296275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381712

RESUMEN

Corynorhinus mexicanus is an insectivorous bat endemic to Mexico that inhabits the high and humid regions of the Sierra Madre Oriental (SMO), the Trans-Mexican Volcanic Belt (TMVB), and the Sierra Madre Occidental (SMOC). A previous study suggested that C. mexicanus could be a cryptic species complex due to the genetic divergence observed between specimens from the TMVB and SMOC. The present study implemented phylogenetic, population genetics, and morphological analyses to evaluate the hypothesis that C. mexicanus is a species complex. The phylogenetic analysis indicated that C. mexicanus is a polyphyletic species composed of three indirectly related lineages. The estimated divergence times for the lineages suggest that they first originated during the Pliocene, while the second and third shared a common ancestor with C. townsendii 1.55 million years ago, and diverged 600,000 years ago during the Middle Pleistocene. The population genetics analysis reveals the SMO lineage of C. mexicanus is an isolated genetic group and highly diverged from the rest of lineages (SMOC and TMVB). The morphological analyses showed variation in the skull and mandible associated with the lineages and sex of the specimens, highlighting a difference in mandible shape between the specimens of the SMO and the rest of C. mexicanus. The results of this study suggest the presence of an undescribed species of the genus Corynorhinus.


Asunto(s)
Quirópteros , Animales , Filogenia , Quirópteros/genética , México , Genética de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...