Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
J Plant Physiol ; 297: 154259, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705079

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Arabidopsis , Indoleacetic Acids , Phenazines , Plant Roots , Pseudomonas chlororaphis , Sucrose , Sucrose/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Pseudomonas chlororaphis/metabolism , Phenazines/metabolism , Indoleacetic Acids/metabolism
2.
Microbiol Res ; 281: 127594, 2024 Apr.
Article En | MEDLINE | ID: mdl-38211416

Soil alkalinity is a critical environmental factor for plant growth and distribution in ecosystems. An alkaline condition (pH > 7) is imposed by the rising concentration of hydroxides and cations, and prevails in semiarid and arid environments, which represent more than 25% of the total arable land of the world. Despite the great pressure exerted by alkalinity for root viability and plant survival, scarce information is available to understand how root microbes contribute to alkaline pH adaptation. Here, we assessed the effects of alkalinity on shoot and root biomass production, chlorophyll content, root growth and branching, lateral root primordia formation, and the expression of CYCB1, TOR kinase, and auxin and cytokinin-inducible trangenes in shoots and roots of Arabidopsis seedlings grown in Petri plates with agar-nutrient medium at pH values of 7.0, 7.5, 8.0, 8.5, and 9.0. The results showed an inverse correlation between the rise of pH and most growth, hormonal and genetic traits analyzed. Noteworthy, root inoculation with Achromobacter sp. 5B1, a beneficial rhizospheric bacterium, with plant growth promoting and salt tolerance features, increased biomass production, restored root growth and branching and enhanced auxin responses in WT seedlings and auxin-related mutants aux1-7 and eir1, indicating that stress adaptation operates independently of canonical auxin transporter proteins. Sequencing of the Achromobacter sp. 5B1 genome unveiled 5244 protein-coding genes, including genes possibly involved in auxin biosynthesis, quorum-sensing regulation and stress adaptation, which may account for its plant growth promotion attributes. These data highlight the critical role of rhizobacteria to increase plant resilience under high soil pH conditions potentially through genes for adaptation to an extreme environment and bacteria-plant communication.


Arabidopsis Proteins , Arabidopsis , Seedlings , Arabidopsis Proteins/genetics , Ecosystem , Plant Roots , Indoleacetic Acids/metabolism , Soil , Gene Expression Regulation, Plant
3.
Microb Ecol ; 86(1): 431-445, 2023 Jul.
Article En | MEDLINE | ID: mdl-35867140

The interaction of plants with bacteria and the long-term success of their adaptation to challenging environments depend upon critical traits that include nutrient solubilization, remodeling of root architecture, and modulation of host hormonal status. To examine whether bacterial promotion of phosphate solubilization, root branching and the host auxin response may account for plant growth, we isolated and characterized ten bacterial strains based on their high capability to solubilize calcium phosphate. All strains could be grouped into six Pseudomonas species, namely P. brassicae, P. baetica, P. laurylsulfatiphila, P. chlororaphis, P. lurida, and P. extremorientalis via 16S rRNA molecular analyses. A Solibacillus isronensis strain was also identified, which remained neutral when interacting with Arabidopsis roots, and thus could be used as inoculation control. The interaction of Arabidopsis seedlings with bacterial streaks from pure cultures in vitro indicated that their phytostimulation properties largely differ, since P. brassicae and P. laurylsulfatiphila strongly increased shoot and root biomass, whereas the other species did not. Most bacterial isolates, except P. chlororaphis promoted lateral root formation, and P. lurida and P. chlororaphis strongly enhanced expression of the auxin-inducible gene construct DR5:GUS in roots, but the most bioactive probiotic bacterium P. brassicae could not enhance the auxin response. Inoculation with P. brassicae and P. lurida improved shoot and root growth in medium supplemented with calcium phosphate as the sole Pi source. Collectively, our data indicate the differential responses of Arabidopsis seedlings to inoculation with several Pseudomonas species and highlight the potential of P. brassicae to manage phosphate nutrition and plant growth in a more eco-friendly manner.


Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Pseudomonas/genetics , Seedlings , Phosphates/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Plant Roots/microbiology , Indoleacetic Acids/metabolism , Bacteria/genetics
4.
Elife ; 102021 12 13.
Article En | MEDLINE | ID: mdl-34895466

Meiotic drivers are genetic elements that break Mendel's law of segregation to be transmitted into more than half of the offspring produced by a heterozygote. The success of a driver relies on outcrossing (mating between individuals from distinct lineages) because drivers gain their advantage in heterozygotes. It is, therefore, curious that Schizosaccharomyces pombe, a species reported to rarely outcross, harbors many meiotic drivers. To address this paradox, we measured mating phenotypes in S. pombe natural isolates. We found that the propensity for cells from distinct clonal lineages to mate varies between natural isolates and can be affected both by cell density and by the available sexual partners. Additionally, we found that the observed levels of preferential mating between cells from the same clonal lineage can slow, but not prevent, the spread of a wtf meiotic driver in the absence of additional fitness costs linked to the driver. These analyses reveal parameters critical to understanding the evolution of S. pombe and help explain the success of meiotic drivers in this species.


The fission yeast, Schizosaccharomyces pombe, is a haploid organism, meaning it has a single copy of each of its genes. S. pombe cells generally carry one copy of each chromosome and can reproduce clonally by duplicating these chromosomes and then dividing into two cells. However, when the yeast are starving, they can reproduce sexually. This involves two cells mating by fusing together to create a 'diploid zygote', which contains two copies of each gene. The zygote then undergoes 'meiosis', a special type of cell division in which the zygote first duplicates its genome and then divides twice. This results in four haploid spores which are analogous to sperm and eggs in humans that each contain one copy of the genome. The spores will grow and divide normally when conditions improve. The genes carried by each of the haploid spores depend on the cells that formed the zygote. If the two 'parent' yeast had the same version or 'allele' of a gene, all four spores will have it in their genome. However, if the two parents have different alleles, only 50% of the offspring will carry each version. Although this is usually the case, there are certain alleles, called meiotic drivers, that are transmitted to all offspring even in situations where it is only carried by one parent. Meiotic drivers can be found in many organisms, including mammals, but their behavior is easiest to study in yeast. Meiotic drivers known as killers achieve this by disposing of any 'sister' spores that do not inherit the same allele of this gene. This 'killing' can only happen when only one of the 'parents' carries the driver. This scenario is thought to rarely occur in species that inbreed, as inbreeding leads to both gene copies being the same. However, this does not appear to be the case for S. pombe, which contain a whole family of killer meiotic drivers, the wtf genes, despite also being reported to mainly inbreed. To investigate this contradiction, López Hernández et al. isolated several genetically distinct populations of S.pombe. These isolates were grown together to determine how often the each one would outcross (mate with an individual from a different population) or inbreed. The results found that levels of inbreeding varied between isolates. Next, López Hernández et al. used mathematical modelling and experimental evolution analyses to study how wtf drivers spread amongst these populations. This revealed that wtf genes spread faster in populations with more outcrossing. In some instances, the wtf driver was linked to a gene that could harm the population. In these cases, López Hernández et al. found than inbreeding could purge these drivers and stop them from spreading the dangerous alleles through the population. López Hernández et al. establish a simple experimental system to model driver evolution and experimentally demonstrate how key parameters, such as outcrossing rates, affect the spread of these genes. Understanding how meiotic drivers spread is important, as these systems could potentially be used to modify populations important to humans, such as crops or disease vectors.


Meiosis/genetics , Phenotype , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Heterozygote , Schizosaccharomyces/physiology , Schizosaccharomyces pombe Proteins/metabolism , Spores, Fungal/genetics
5.
Sci Rep ; 10(1): 7543, 2020 05 05.
Article En | MEDLINE | ID: mdl-32372001

The detection and analysis of circulating tumor cells (CTCs) may enable a broad range of cancer-related applications, including the identification of acquired drug resistance during treatments. However, the non-scalable fabrication, prolonged sample processing times, and the lack of automation, associated with most of the technologies developed to isolate these rare cells, have impeded their transition into the clinical practice. This work describes a novel membrane-based microfiltration device comprised of a fully automated sample processing unit and a machine-vision-enabled imaging system that allows the efficient isolation and rapid analysis of CTCs from blood. The device performance was characterized using four prostate cancer cell lines, including PC-3, VCaP, DU-145, and LNCaP, obtaining high assay reproducibility and capture efficiencies greater than 93% after processing 7.5 mL blood samples spiked with 100 cancer cells. Cancer cells remained viable after filtration due to the minimal shear stress exerted over cells during the procedure, while the identification of cancer cells by immunostaining was not affected by the number of non-specific events captured on the membrane. We were also able to identify the androgen receptor (AR) point mutation T878A from 7.5 mL blood samples spiked with 50 LNCaP cells using RT-PCR and Sanger sequencing. Finally, CTCs were detected in 8 out of 8 samples from patients diagnosed with metastatic prostate cancer (mean ± SEM = 21 ± 2.957 CTCs/mL, median = 21 CTCs/mL), demonstrating the potential clinical utility of this device.


Cell Separation/instrumentation , Filtration/instrumentation , Neoplastic Cells, Circulating , Prostatic Neoplasms/blood , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Biomedical Engineering , Cell Line, Tumor , Cell Separation/methods , Filtration/methods , Humans , Male , Middle Aged , Mutation , Neoplasm Metastasis , Pattern Recognition, Automated , Polymethyl Methacrylate/chemistry , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Reproducibility of Results
6.
Microb Cell Fact ; 19(1): 69, 2020 Mar 18.
Article En | MEDLINE | ID: mdl-32188455

BACKGROUND: Trichoderma species are among the most effective cell factories to produce recombinant proteins, whose productivity relies on the molecular toolkit and promoters available for the expression of the target protein. Although inducible promoter systems have been developed for producing recombinant proteins in Trichoderma, constitutive promoters are often a desirable alternative. Constitutive promoters are simple to use, do not require external stimuli or chemical inducers to be activated, and lead to purer enzyme preparations. Moreover, most of the promoters for homologous and heterologous expression reported in Trichoderma have been commonly evaluated by directly assessing production of industrial enzymes, requiring optimization of laborious protocols. RESULTS: Here we report the identification of Pccg6, a novel Trichoderma atroviride constitutive promoter, that has similar transcriptional strength as that of the commonly used pki1 promoter. Pccg6 displayed conserved arrangements of transcription factor binding sites between promoter sequences of Trichoderma ccg6 orthologues genes, potentially involved in their regulatory properties. The predicted ccg6-encoded protein potentially belongs to the SPE1/SPI1 protein family and shares high identity with CCG6 orthologue sequences from other fungal species including Trichoderma reesei, Trichoderma virens, Trichoderma asperellum, and to a lesser extent to that of Neurospora crassa. We also report the use of the Pccg6 promoter to drive the expression of PTXD, a phosphite oxidoreductase of bacterial origin, which allowed T. atroviride to utilize phosphite as a sole source of phosphorus. We propose ptxD as a growth reporter gene that allows real-time comparison of the functionality of different promoters by monitoring growth of Trichoderma transgenic lines and enzymatic activity of PTXD. Finally, we show that constitutive expression of ptxD provided T. atroviride a competitive advantage to outgrow bacterial contaminants when supplied with phosphite as a sole source of phosphorus. CONCLUSIONS: A new constitutive promoter, ccg6, for expression of homologous and heterologous proteins has been identified and tested in T. atroviride to express PTXD, which resulted in an effective and visible phenotype to evaluate transcriptional activity of sequence promoters. Use of PTXD as a growth marker holds great potential for assessing activity of other promoters and for biotechnological applications as a contamination control system.


Genes, Fungal , Promoter Regions, Genetic , Trichoderma/genetics , Bacterial Proteins/genetics , Cloning, Molecular , Oxidoreductases/genetics , Recombinant Proteins/genetics
7.
Yeast ; 35(7): 447-453, 2018 07.
Article En | MEDLINE | ID: mdl-29322557

Meiotic drivers are selfish DNA loci that can bias their own transmission into gametes. Owing to their transmission advantages, meiotic drivers can spread in populations even if the drivers or linked variants decrease organismal fitness. Meiotic drive was first formally described in the 1950s and is thought to be a powerful force shaping eukaryotic genomes. Classic genetic analyses have detected the action of meiotic drivers in plants, filamentous fungi, insects and vertebrates. Several of these drive systems have limited experimental tractability and relatively little is known about the molecular mechanisms of meiotic drive. Recently, however, meiotic drivers were discovered in a yeast species. The Schizosaccharomyces pombe wtf gene family contains several active meiotic drive genes. This review summarizes what is known about the wtf family and highlights its potential as a highly tractable experimental model for molecular and evolutionary characterization of meiotic drive.


Gene Rearrangement/genetics , Genes, Fungal , Meiosis/genetics , Microbial Viability/genetics , Poisons/metabolism , Schizosaccharomyces/genetics , Genetic Speciation , Models, Genetic , Repetitive Sequences, Nucleic Acid , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Spores, Fungal/genetics , Spores, Fungal/metabolism
8.
BMC Genomics ; 17(1): 615, 2016 08 11.
Article En | MEDLINE | ID: mdl-27514986

BACKGROUND: Lasiodiplodia theobromae is a fungus of the Botryosphaeriaceae that causes grapevine vascular disease, especially in regions with hot climates. Fungi in this group often remain latent within their host and become virulent under abiotic stress. Transcriptional regulation analysis of L. theobromae exposed to heat stress (HS) was first carried out in vitro in the presence of grapevine wood (GW) to identify potential pathogenicity genes that were later evaluated for in planta expression. RESULTS: A total of 19,860 de novo assembled transcripts were obtained, forty-nine per cent of which showed homology to the Botryosphaeriaceae fungi, Neofusicoccum parvum or Macrophomina phaseolina. Three hundred ninety-nine have homology with genes involved in pathogenic processes and several belonged to expanded gene families in others fungal grapevine vascular pathogens. Gene expression analysis showed changes in fungal metabolism of phenolic compounds; where genes encoding for enzymes, with the ability to degrade salicylic acid (SA) and plant phenylpropanoid precursors, were up-regulated during in vitro HS response, in the presence of GW. These results suggest that the fungal L-tyrosine catabolism pathway could help the fungus to remove phenylpropanoid precursors thereby evading the host defense response. The in planta up-regulation of salicylate hydroxylase, intradiol ring cleavage dioxygenase and fumarylacetoacetase encoding genes, further supported this hypothesis. Those genes were even more up-regulated in HS-stressed plants, suggesting that fungus takes advantage of the increased phenylpropanoid precursors produced under stress. Pectate lyase was up-regulated while a putative amylase was down-regulated in planta, this could be associated with an intercellular growth strategy during the first stages of colonization. CONCLUSIONS: L. theobromae transcriptome was established and validated. Its usefulness was demonstrated through the identification of genes expressed during the infection process. Our results support the hypothesis that heat stress facilitates fungal colonization, because of the fungus ability to use the phenylpropanoid precursors and SA, both compounds known to control host defense.


Ascomycota/pathogenicity , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Host-Pathogen Interactions , Transcriptome , Vitis/immunology , Ascomycota/genetics , Ascomycota/growth & development , Dioxygenases/genetics , Dioxygenases/metabolism , Fungal Proteins/metabolism , Gene Expression Profiling , Hot Temperature , Hydrolases/genetics , Hydrolases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Salicylic Acid/metabolism , Tyrosine/biosynthesis , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Vitis/metabolism , Vitis/microbiology
9.
J Proteomics ; 102: 60-5, 2014 May 06.
Article En | MEDLINE | ID: mdl-24642210

Mass spectrometry imaging (MSI) is of high and growing interest in life science research, but the investment for necessary equipment is often prohibitive for small research groups. Therefore, we developed a basic MSI system from low cost 'Plug and Play' components, which are connected to the Universal Serial Bus (USB) of a standard computer. Our open source software OpenMZxy (http://www.bioprocess.org/openmzxy) enables automatic and manual sampling, as well as the recording of position data. For ionization we used a low-temperature plasma probe (LTP), coupled to a quadrupole mass analyzer. The current set-up has a practical resolution of 1mm, and a sampling area of 100×100mm, resulting in up to 10,000 sampling points. Our prototype is easy and economical to adopt for different types of mass analyzers. We prove the usability of the LTP-MSI system for macroscopic samples by imaging the distribution of metabolites in the longitudinal cross-cut of a chili (Capsicum annuum, 'Jalapeño pepper') fruit. The localization of capsaicin in the placenta could be confirmed. But additionally, yet unknown low molecular weight compounds were detected in defined areas, which underline the potential of LTP-MSI for the imaging of volatile and semi-volatile metabolites and for the discovery of new natural products. Biological significance Knowledge about the spatial distribution of metabolites, proteins, or lipids in a given tissue often leads to novel findings in medicine and biology. Therefore, mass spectrometry based imaging (MSI) is becoming increasingly popular in life science research. However, the investment for necessary equipment is often prohibitive for small research groups. We built a prototype with an ambient ionization source, which is easy and economical to adopt for different types of mass analyzers. Therefore, we hope that our system contributes to a broader use of mass spectrometry imaging for answering biological questions.


Mass Spectrometry/methods , Capsicum/metabolism , Cold Temperature , Computer Systems , Equipment Design , Programming Languages , Software
10.
Acta Ortop Mex ; 21(3): 154-8, 2007.
Article Es | MEDLINE | ID: mdl-17937180

INTRODUCTION: The avultion-fracture of the tibial tuberosity is a rare injury, one which appears in adolescents, predominantly male and happens in a zone in which the conditions of bone immaturity are favorable, so that an abrupt traction of the patellar tendon generates the injury. The reports of simultaneous fractures in both knees are rare. CLINICAL CASE: A 14-year-old masculine patient, who had suffered indirect trauma in both knees while playing soccer. The injuries correspond to a 3-A and one 3-B of Ogden's classification for the right and left knee respectively. Both injuries were treated in the same surgical act using screws and wire. The recovery of the patient was satisfactory. CONCLUSION: The avultion-fracture of the tibial tuberosity is a rare injury. The bilateral presentation in simultaneous form is even rarer. Generally they are injuries of type 3 that require surgical handling. Preexisting conditions such as Osgood-Schlatter disease and the type of athletic training must be considered.


Fractures, Closed/surgery , Fractures, Comminuted/surgery , Knee Injuries/surgery , Soccer/injuries , Tibial Fractures/surgery , Adolescent , Bone Screws , Fracture Fixation, Internal , Fractures, Closed/etiology , Fractures, Comminuted/etiology , Humans , Male , Tibial Fractures/epidemiology , Tibial Fractures/etiology
...