Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Fish Shellfish Immunol ; 148: 109472, 2024 May.
Article En | MEDLINE | ID: mdl-38438059

The shrimp industry has historically been affected by viral and bacterial diseases. One of the most recent emerging diseases is Acute Hepatopancreatic Necrosis Disease (AHPND), which causes severe mortality. Despite its significance to sanitation and economics, little is known about the molecular response of shrimp to this disease. Here, we present the cellular and transcriptomic responses of Litopenaeus vannamei exposed to two Vibrio parahaemolyticus strains for 98 h, wherein one is non-pathogenic (VpN) and the other causes AHPND (VpP). Exposure to the VpN strain resulted in minor alterations in hepatopancreas morphology, including reductions in the size of R and B cells and detachments of small epithelial cells from 72 h onwards. On the other hand, exposure to the VpP strain is characterized by acute detachment of epithelial cells from the hepatopancreatic tubules and infiltration of hemocytes in the inter-tubular spaces. At the end of exposure, RNA-Seq analysis revealed functional enrichment in biological processes, such as the toll3 receptor signaling pathway, apoptotic processes, and production of molecular mediators involved in the inflammatory response of shrimp exposed to VpN treatment. The biological processes identified in the VpP treatment include superoxide anion metabolism, innate immune response, antimicrobial humoral response, and toll3 receptor signaling pathway. Furthermore, KEGG enrichment analysis revealed metabolic pathways associated with survival, cell adhesion, and reactive oxygen species, among others, for shrimp exposed to VpP. Our study proves the differential immune responses to two strains of V. parahaemolyticus, one pathogenic and the other nonpathogenic, enlarges our knowledge on the evolution of AHPND in L. vannamei, and uncovers unique perspectives on establishing genomic resources that may function as a groundwork for detecting probable molecular markers linked to the immune system in shrimp.


Penaeidae , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/physiology , Gene Expression Profiling/veterinary , Transcriptome , Hepatopancreas/pathology , Necrosis/microbiology , Acute Disease
2.
Mar Pollut Bull ; 163: 111945, 2021 Feb.
Article En | MEDLINE | ID: mdl-33444999

Ocean acidification generates a decrease in calcium carbonate availability essential for biomineralization in organisms such as mollusks. This effect was evaluated on Panopea globosa exposing for 7 days umbonate veliger larvae to two pH treatments: experimental (pH 7.5) and control (pH 8.0). Exposure to pH 7.5 affected growth, reducing larval shell length from 5.15-13.34% compared to the control group. This size reduction was confirmed with electron microscopy, also showing shell damage. The physiological response showed an increase in oxygen consumption in larvae exposed to low pH with a maximum difference of 1.57 nmol O2 h-1 larvae-1 at day 7. The gene expression analyses reported high expression values for nicotinamide adenine dinucleotide (NADH) dehydrogenase and Perlucin in larvae at pH 7.5, suggesting a higher energetic cost in this larval group to maintain homeostasis. In conclusion, this study showed that acidification affected development of P. globosa umbonate veliger larvae.


Bivalvia , Seawater , Animals , Carbon Dioxide , Homeostasis , Hydrogen-Ion Concentration , Larva
3.
Article En | MEDLINE | ID: mdl-31306803

The adverse effect of crude oil on marine invertebrates is well known. To have a better understanding of its effects on marine invertebrates, Crassostrea virginica was exposed to different concentrations (50, 100 and 200 µg/L) of a mixture of super-light and light crude oil for two weeks, evaluating the transcriptomic response of the digestive gland using RNA-Seq and their accumulation in soft tissues. A total of 33,469,374 reads were assembled, which resulted in 61,356 genome assemblies ('Genes'). Trinotate was used for transcript annotation. At the end of this process, 86,409 transcripts were maintained, comprising a broad set of enzymes from xenobiotics metabolism, oxidative stress, stress and immune responses, and energetic metabolism. The enrichment analysis revealed a change in biological processes and molecular functions, finding from 100 to 200 µg/L. Moreover, the differential gene expression analysis showed a dose-dependent transcriptional response, generally up to 100 µg/L and in some cases up to 200 µg/L, which suggested that oysters' response decreased after 100 µg/L; the analysis of crude oil presence in soft tissues indicated that C. virginica is a suitable candidate for ecotoxicology. Finally, these results should contribute to expanding current genomic resources for C. virginica. Furthermore, they will help to develop new studies in aquatic toxicology focused on knowledge in depth of metabolic pathways, jointly with other approaches (such as proteomics) to allow obtaining a complete idea about the eastern oyster response to crude oil.


Crassostrea , Hydrocarbons/metabolism , Petroleum Pollution/adverse effects , Petroleum , Water Pollutants, Chemical , Water Pollution, Chemical/adverse effects , Animals , Crassostrea/genetics , Crassostrea/metabolism , Gene Expression Profiling , Petroleum/metabolism , Petroleum/toxicity , Seafood , Transcriptome/genetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
4.
Gene ; 549(2): 258-65, 2014 Oct 10.
Article En | MEDLINE | ID: mdl-25101866

The red abalone Haliotis rufescens is one of the most important species for aquaculture in Baja California, México, and despite this, few gene expression studies have been done in tissues such as gill, head and gonad. For this purpose, reverse transcription and quantitative real time PCR (RT-qPCR) is a powerful tool for gene expression evaluation. For a reliable analysis, however, it is necessary to select and validate housekeeping genes that allow proper transcription quantification. Stability of nine housekeeping genes (ACTB, BGLU, TUBB, CY, GAPDH, HPRTI, RPL5, SDHA and UBC) was evaluated in different tissues of red abalone (gill, head and gonad/digestive gland). Four-fold serial dilutions of cDNA (from 25 ngµL(-1) to 0.39 ngµL(-1)) were used to prepare the standard curve, and it showed gene efficiencies between 0.95 and 0.99, with R(2)=0.99. geNorm and NormFinder analysis showed that RPL5 and CY were the most stable genes considering all tissues, whereas in gill HPRTI and BGLU were most stable. In gonad/digestive gland, RPL5 and TUBB were the most stable genes with geNorm, while SDHA and HPRTI were the best using NormFinder. Similarly, in head the best genes were RPL5 and UBC with geNorm, and GAPDH and CY with NormFinder. The technical variability analysis with RPL5 and abalone gonad/digestive gland tissue indicated a high repeatability with a variation coefficient within groups ≤ 0.56% and between groups ≤ 1.89%. These results will help us for further research in reproduction, thermoregulation and endocrinology in red abalone.


Gene Expression Profiling/standards , Genes, Essential , Mollusca/genetics , Real-Time Polymerase Chain Reaction/standards , Animals , Female , Gene Expression Profiling/methods , Gonads/metabolism , Male , Mollusca/metabolism , Quality Control , Real-Time Polymerase Chain Reaction/methods , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/standards , Validation Studies as Topic
...