Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Trials ; 23(1): 518, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725616

RESUMEN

BACKGROUND: There is a pressing need for scalable healthcare solutions and a shift in the rehabilitation paradigm from hospitals to homes to tackle the increase in stroke incidence while reducing the practical and economic burden for patients, hospitals, and society. Digital health technologies can contribute to addressing this challenge; however, little is known about their effectiveness in at-home settings. In response, we have designed the RGS@home study to investigate the effectiveness, acceptance, and cost of a deep tech solution called the Rehabilitation Gaming System (RGS). RGS is a cloud-based system for delivering AI-enhanced rehabilitation using virtual reality, motion capture, and wearables that can be used in the hospital and at home. The core principles of the brain theory-based RGS intervention are to deliver rehabilitation exercises in the form of embodied, goal-oriented, and task-specific action. METHODS: The RGS@home study is a randomized longitudinal clinical trial designed to assess whether the combination of the RGS intervention with standard care is superior to standard care alone for the functional recovery of stroke patients at the hospital and at home. The study is conducted in collaboration with hospitals in Spain, Sweden, and France and includes inpatients and outpatients at subacute and chronic stages post-stroke. The intervention duration is 3 months with assessment at baseline and after 3, 6, and 12 months. The impact of RGS is evaluated in terms of quality of life measurements, usability, and acceptance using standardized clinical scales, together with health economic analysis. So far, one-third of the patients expected to participate in the study have been recruited (N = 90, mean age 60, days after stroke ≥ 30 days). The trial will end in July 2023. DISCUSSION: We predict an improvement in the patients' recovery, high acceptance, and reduced costs due to a soft landing from the clinic to home rehabilitation. In addition, the data provided will allow us to assess whether the prescription of therapy at home can counteract deterioration and improve quality of life while also identifying new standards for online and remote assessment, diagnostics, and intervention across European hospitals. TRIAL REGISTRATION: C linicalTrials.gov NCT04620707. Registered on November 3, 2020.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Telemedicina , Humanos , Persona de Mediana Edad , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Recuperación de la Función , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos
2.
J Hepatol ; 72(1): 125-134, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31562907

RESUMEN

BACKGROUND & AIMS: Upon ligand binding, tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), are recruited into clathrin-coated pits for internalization by endocytosis, which is relevant for signalling and/or receptor degradation. In liver cells, transforming growth factor-ß (TGF-ß) induces both pro- and anti-apoptotic signals; the latter are mediated by the EGFR pathway. Since EGFR mainly traffics via clathrin-coated vesicles, we aimed to analyse the potential role of clathrin in TGF-ß-induced signalling in liver cells and its relevance in liver cancer. METHODS: Real-Time PCR and immunohistochemistry were used to analyse clathrin heavy-chain expression in human (CLTC) and mice (Cltc) liver tumours. Transient knockdown (siRNA) or overexpression of CLTC were used to analyse its role on TGF-ß and EGFR signalling in vitro. Bioinformatic analysis was used to determine the effect of CLTC and TGFB1 expression on prognosis and overall survival in patients with hepatocellular carcinoma (HCC). RESULTS: Clathrin expression increased during liver tumorigenesis in humans and mice. CLTC knockdown cells responded to TGF-ß phosphorylating SMADs (canonical signalling) but showed impairment in the anti-apoptotic signals (EGFR transactivation). Experiments of loss or gain of function in HCC cells reveal an essential role for clathrin in inhibiting TGF-ß-induced apoptosis and upregulation of its pro-apoptotic target NOX4. Autocrine TGF-ß signalling in invasive HCC cells upregulates CLTC expression, switching its role to pro-tumorigenic. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CONCLUSIONS: This work describes a novel role for clathrin in liver tumorigenesis, favouring non-canonical pro-tumorigenic TGF-ß pathways. CLTC expression in human HCC samples could help select patients that would benefit from TGF-ß-targeted therapy. LAY SUMMARY: Clathrin heavy-chain expression increases during liver tumorigenesis in humans (CLTC) and mice (Cltc), altering the cellular response to TGF-ß in favour of anti-apoptotic/pro-tumorigenic signals. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CLTC expression in HCC human samples could help select patients that would benefit from therapies targeting TGF-ß.


Asunto(s)
Carcinogénesis/genética , Cadenas Pesadas de Clatrina/genética , Cadenas Pesadas de Clatrina/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Hepatocitos/metabolismo , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Pronóstico , ARN Interferente Pequeño , Transfección
3.
Cancer Lett ; 464: 15-24, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465839

RESUMEN

The Epidermal Growth Factor Receptor (EGFR) and the Transforming Growth Factor-beta (TGF-ß) are key regulators of hepatocarcinogenesis. Targeting EGFR was proposed as a promising therapy; however, poor success was obtained in human hepatocellular carcinoma (HCC) clinical trials. Here, we describe how EGFR is frequently downregulated in HCC patients while TGF-ß is upregulated. Using 2D/3D cellular models, we show that after EGFR loss, TGF-ß is more efficient in its pro-migratory and invasive effects, inducing epithelial to amoeboid transition. EGFR knock-down promotes loss of cell-cell and cell-to-matrix adhesion, favouring TGF-ß-induced actomyosin contractility and acquisition of an amoeboid migratory phenotype. Moreover, TGF-ß upregulates RHOC and CDC42 after EGFR silencing, promoting Myosin II in amoeboid cells. Importantly, low EGFR combined with high TGFB1 or RHOC/CDC42 levels confer poor patient prognosis. In conclusion, this work reveals a new tumour suppressor function for EGFR counteracting TGF-ß-mediated epithelial to amoeboid transitions in HCC, supporting a rational for targeting the TGF-ß pathway in patients with low EGFR expression. Our work also highlights the relevance of epithelial to amoeboid transition in human tumours and the need to better target this process in the clinic.


Asunto(s)
Carcinoma Hepatocelular/genética , Regulación hacia Abajo , Neoplasias Hepáticas/genética , Factor de Crecimiento Transformador beta/metabolismo , Carcinoma Hepatocelular/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/metabolismo , Modelos Biológicos , Pronóstico , Transducción de Señal
4.
Int J Dev Biol ; 62(6-7-8): 441-451, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29938756

RESUMEN

The liver is structurally and functionally heterogeneous and complex, and it accomplishes crucial functions for the organism. Its most remarkable potential is its capacity to regenerate after injury in order to maintain whole body homeostasis and guarantee the survival of the individual. Under normal conditions, liver regeneration (LR) is attributed to adult hepatocytes, the main cells in the liver which are able to proliferate in response to different stimuli or injuries. Nevertheless, when liver injury is severe and/or hepatocytes are prevented from proliferation, liver stem/progenitor cells (LS/PCs) participate directing LR to maintain liver mass and functions. Different mechanisms have been shown to guide this second line of LR, such as intrahepatic and extrahepatic liver progenitor cells, as well as transdifferentiation processes between hepatocytes and other liver cells. For this reason, many efforts have been made to elucidate the specific molecular mechanisms which orchestrate this process; this in turn would improve the prognosis and treatment of liver diseases. In this review, we revisit the fascinating process of LR, also with a short overview about liver development, the process from which arises the concept of LS/PCs participating in LR, and very important nowadays when considering cell therapy and tissue bioengineering for the treatment of patients suffering from liver disease.


Asunto(s)
Hepatocitos/fisiología , Regeneración Hepática/fisiología , Hígado/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular/fisiología , Transdiferenciación Celular/fisiología , Hepatocitos/citología , Homeostasis/fisiología , Humanos , Hígado/citología , Hepatopatías/fisiopatología , Células Madre/citología
5.
Free Radic Biol Med ; 118: 44-58, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29471108

RESUMEN

Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-ß signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-ß, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1C1039G/+-Nox4-/-). Increased tyrosine nitration and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1C1039G/+-Nox4-/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1C1039G/+-Nox4-/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H2O2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function.


Asunto(s)
Aneurisma de la Aorta/metabolismo , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , NADPH Oxidasa 4/metabolismo , Estrés Oxidativo/fisiología , Adulto , Animales , Aneurisma de la Aorta/etiología , Femenino , Humanos , Masculino , Síndrome de Marfan/complicaciones , Ratones , Ratones Noqueados , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Oxidación-Reducción , Adulto Joven
6.
Cell Death Dis ; 8(10): e3098, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29022911

RESUMEN

Hepatocellular carcinoma (HCC) is a heterogeneous tumour associated with poor prognostic outcome. Caveolin-1 (CAV1), a membrane protein involved in the formation of caveolae, is frequently overexpressed in HCC. Transforming growth factor-beta (TGF-ß) is a pleiotropic cytokine having a dual role in hepatocarcinogenesis: inducer of apoptosis at early phases, but pro-tumourigenic once cells acquire mechanisms to overcome its suppressor effects. Apoptosis induced by TGF-ß is mediated by upregulation of the NADPH oxidase NOX4, but counteracted by transactivation of the epidermal growth factor receptor (EGFR) pathway. Previous data suggested that CAV1 is required for the anti-apoptotic signals triggered by TGF-ß in hepatocytes. Whether this mechanism is relevant in hepatocarcinogenesis has not been explored yet. Here we analysed the TGF-ß response in HCC cell lines that express different levels of CAV1. Accordingly, stable CAV1 knockdown or overexpressing cell lines were generated. We demonstrate that CAV1 is protecting HCC cells from TGF-ß-induced apoptosis, which attenuates its suppressive effect on clonogenic growth and increases its effects on cell migration. Downregulation of CAV1 in HLE cells promotes TGF-ß-mediated induction of the pro-apoptotic BMF, which correlates with upregulation of NOX4, whereas CAV1 overexpression in Huh7 cells shows the opposite effect. CAV1 silenced HLE cells show attenuation in TGF-ß-induced EGFR transactivation and activation of the PI3K/AKT pathway. On the contrary, Huh7 cells, which do not respond to TGF-ß activating the EGFR pathway, acquire the capacity to do so when CAV1 is overexpressed. Analyses in samples from HCC patients revealed that tumour tissues presented higher expression levels of CAV1 compared with surrounding non-tumoural areas. Furthermore, a significant positive correlation among the expression of CAV1 and TGFB1 was observed. We conclude that CAV1 has an essential role in switching the response to TGF-ß from cytostatic to tumourigenic, which could have clinical meaning in patient stratification.


Asunto(s)
Carcinoma Hepatocelular/patología , Caveolina 1/metabolismo , Neoplasias Hepáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/fisiología , Caveolina 1/biosíntesis , Caveolina 1/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hepatocitos/metabolismo , Humanos , NADPH Oxidasa 4/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/biosíntesis
7.
Hepatology ; 63(2): 604-19, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26313466

RESUMEN

UNLABELLED: Different data support a role for the epidermal growth factor receptor (EGFR) pathway during liver regeneration and hepatocarcinogenesis. However, important issues, such as the precise mechanisms mediating its actions and the unique versus redundant functions, have not been fully defined. Here, we present a novel transgenic mouse model expressing a hepatocyte-specific truncated form of human EGFR, which acts as negative dominant mutant (ΔEGFR) and allows definition of its tyrosine kinase-dependent functions. Results indicate a critical role for EGFR catalytic activity during the early stages of liver regeneration. Thus, after two-thirds partial hepatectomy, ΔEGFR livers displayed lower and delayed proliferation and lower activation of proliferative signals, which correlated with overactivation of the transforming growth factor-ß pathway. Altered regenerative response was associated with amplification of cytostatic effects of transforming growth factor-ß through induction of cell cycle negative regulators. Interestingly, lipid synthesis was severely inhibited in ΔEGFR livers after partial hepatectomy, revealing a new function for EGFR kinase activity as a lipid metabolism regulator in regenerating hepatocytes. In spite of these profound alterations, ΔEGFR livers were able to recover liver mass by overactivating compensatory signals, such as c-Met. Our results also indicate that EGFR catalytic activity is critical in the early preneoplastic stages of the liver because ΔEGFR mice showed a delay in the appearance of diethyl-nitrosamine-induced tumors, which correlated with decreased proliferation and delay in the diethyl-nitrosamine-induced inflammatory process. CONCLUSION: These studies demonstrate that EGFR catalytic activity is critical during the initial phases of both liver regeneration and carcinogenesis and provide key mechanistic insights into how this kinase acts to regulate liver pathophysiology. (Hepatology 2016;63:604-619).


Asunto(s)
Carcinogénesis , Receptores ErbB/fisiología , Neoplasias Hepáticas/etiología , Regeneración Hepática/fisiología , Animales , Catálisis , Humanos , Masculino , Ratones
8.
Arterioscler Thromb Vasc Biol ; 35(4): 960-72, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25593132

RESUMEN

OBJECTIVE: Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-ß signaling. TGF-ß is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-ß signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. APPROACH AND RESULTS: Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-ß pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. CONCLUSIONS: In Marfan VSMC, both in tissue and in culture, there are variable TGF-ß-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation.


Asunto(s)
Aneurisma de la Aorta/etiología , Diferenciación Celular , Síndrome de Marfan/complicaciones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Actinas/metabolismo , Aorta/metabolismo , Aorta/patología , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Biomarcadores/metabolismo , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dilatación Patológica , Adhesiones Focales/metabolismo , Humanos , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patología , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteínas Nucleares/metabolismo , Fenotipo , Transducción de Señal , Fibras de Estrés/metabolismo , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Vascular , Proteína de Unión al GTP rhoA/metabolismo , Calponinas
9.
Free Radic Biol Med ; 69: 338-47, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24509161

RESUMEN

The NADPH oxidase NOX4 has emerged as an important source of reactive oxygen species in signal transduction, playing roles in physiological and pathological processes. NOX4 mediates transforming growth factor-ß-induced intracellular signals that provoke liver fibrosis, and preclinical assays have suggested NOX4 inhibitors as useful tools to ameliorate this process. However, the potential consequences of sustained treatment of liver cells with NOX4 inhibitors are yet unknown. The aim of this work was to analyze whether NOX4 plays a role in regulating liver cell growth either under physiological conditions or during tumorigenesis. In vitro assays proved that stable knockdown of NOX4 expression in human liver tumor cells increased cell proliferation, which correlated with a higher percentage of cells in S/G2/M phases of the cell cycle, downregulation of p21(CIP1/WAF1), increase in cyclin D1 protein levels, and nuclear localization of ß-catenin. Silencing of NOX4 in untransformed human and mouse hepatocytes also increased their in vitro proliferative capacity. In vivo analysis in mice revealed that NOX4 expression was downregulated under physiological proliferative situations of the liver, such as regeneration after partial hepatectomy, as well as during pathological proliferative conditions, such as diethylnitrosamine-induced hepatocarcinogenesis. Xenograft experiments in athymic mice indicated that NOX4 silencing conferred an advantage to human hepatocarcinoma cells, resulting in earlier onset of tumor formation and increase in tumor size. Interestingly, immunochemical analyses of NOX4 expression in human liver tumor cell lines and tissues revealed decreased NOX4 protein levels in liver tumorigenesis. Overall, results described here strongly suggest that NOX4 would play a growth-inhibitory role in liver cells.


Asunto(s)
Carcinogénesis/genética , Hepatocitos/metabolismo , Neoplasias Hepáticas/genética , NADPH Oxidasas/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/biosíntesis , Ciclina D1/genética , Regulación Neoplásica de la Expresión Génica/genética , Hepatocitos/citología , Humanos , Neoplasias Hepáticas/patología , Ratones , NADPH Oxidasa 4 , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/genética , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Hepatology ; 58(6): 2032-44, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23813475

RESUMEN

UNLABELLED: Transforming growth factor-beta (TGF-ß) is an important regulatory suppressor factor in hepatocytes. However, liver tumor cells develop mechanisms to overcome its suppressor effects and respond to this cytokine by inducing other processes, such as the epithelial-mesenchymal transition (EMT), which contributes to tumor progression and dissemination. Recent studies have placed chemokines and their receptors at the center not only of physiological cell migration but also of pathological processes, such as metastasis in cancer. In particular, CXCR4 and its ligand, stromal cell-derived factor 1α (SDF-1α) / chemokine (C-X-C motif) ligand 12 (CXCL12) have been revealed as regulatory molecules involved in the spreading and progression of a variety of tumors. Here we show that autocrine stimulation of TGF-ß in human liver tumor cells correlates with a mesenchymal-like phenotype, resistance to TGF-ß-induced suppressor effects, and high expression of CXCR4, which is required for TGF-ß-induced cell migration. Silencing of the TGF-ß receptor1 (TGFBR1), or its specific inhibition, recovered the epithelial phenotype and attenuated CXCR4 expression, inhibiting cell migratory capacity. In an experimental mouse model of hepatocarcinogenesis (diethylnitrosamine-induced), tumors showed increased activation of the TGF-ß pathway and enhanced CXCR4 levels. In human hepatocellular carcinoma tumors, high levels of CXCR4 always correlated with activation of the TGF-ß pathway, a less differentiated phenotype, and a cirrhotic background. CXCR4 concentrated at the tumor border and perivascular areas, suggesting its potential involvement in tumor cell dissemination. CONCLUSION: A crosstalk exists among the TGF-ß and CXCR4 pathways in liver tumors, reflecting a novel molecular mechanism that explains the protumorigenic effects of TGF-ß and opens new perspectives for tumor therapy.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas/fisiopatología , Receptores CXCR4/metabolismo , Factor de Crecimiento Transformador beta1/biosíntesis , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Quimiocina CXCL12 , Dietilnitrosamina , Femenino , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Masculino , Ratones , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores CXCR4/biosíntesis , Receptores de Factores de Crecimiento Transformadores beta/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...