Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742918

RESUMEN

Plants provide a wide array of compounds that can be explored for potential anticancer properties. Siphonochilone, a furanoterpene that represents one of the main components of the African plant Siphonochilus aethiopicus, shows numerous health benefits. However, to date, its antiproliferative properties have not been tested. The aim of this study was to analyze the cytotoxic effects of siphonochilone on a panel of cancer cell lines and its underlying mechanism of action. Our results demonstrated that siphonochilone exhibited significant cytotoxic effects on pancreatic, breast, lung, colon, and liver cancer cell lines showing a IC50 ranging from 22 to 124 µM at 72 h of treatment and highlighting its cytotoxic effect against MCF7 and PANC1 breast and pancreas cancer cell lines (22.03 and 39.03 µM, respectively). Cell death in these tumor lines was mediated by apoptosis by the mitochondrial pathway, as evidenced by siphonochilone-induced depolarization of the mitochondrial membrane potential. In addition, siphonochilone treatment involves the generation of reactive oxygen species that may contribute to apoptosis induction. In this work, we described for the first time the cytotoxic properties of siphonochilone and provided data about the molecular processes of cell death. Although future studies will be necessary, our results support the interest in this molecule in relation to their clinical application in cancer, and especially in breast and pancreatic cancer.

2.
Biomed Pharmacother ; 168: 115789, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924787

RESUMEN

Lung cancer is the most commonly diagnosed cancer and the one that causes the most deaths worldwide, so there is a need for therapies that improve survival rates. Products derived from marine organisms are a source of novel and potent antitumor compounds, but they present the great obstacle of their obtaining from the natural environment and the problems associated with the synthesis and biological effects of chemical analogues. In this work, a Bengamide analogue (Bengamide II) was chemically synthesized and in vitro and in vivo studies were performed to determine its antitumor activity and mechanisms of action. It was shown to have potent antiproliferative activity in lung cancer lines in 2D and 3D models. In addition, Bengamide II-treated cells showed G2/M and G0/G1 cell cycle arrest, together with a decrease in the proliferation marker Ki67. As for the mechanism of action, the treatment was associated with increased LC3-II expression and production of acidic vesicles signaling autophagy. In addition, Bengamide II treatment was associated with caspase-3 activation and DNA fragmentation related to apoptosis. Furthermore, a reduction of VEGFA expression, related to angiogenesis, was also observed. In vivo studies showed that Bengamide II markedly reduced tumor volume and metastases increasing survival. Additionally, it revealed no systemic toxicity in in vivo models at the therapeutic doses used, which is essential for its future clinical use. Taken together, the chemically synthesized bengamide analogue Bengamide II, is a promising drug for lung cancer treatment showing relevant antitumor activity and significant safety.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular , Línea Celular Tumoral , Transducción de Señal , Apoptosis
3.
Mar Drugs ; 20(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36005497

RESUMEN

Antibody-drug conjugates (ADCs) are an important class of therapeutics for the treatment of cancer. Structurally, an ADC comprises an antibody, which serves as the delivery system, a payload drug that is a potent cytotoxin that kills cancer cells, and a chemical linker that connects the payload with the antibody. Unlike conventional chemotherapy methods, an ADC couples the selective targeting and pharmacokinetic characteristics related to the antibody with the potent cytotoxicity of the payload. This results in high specificity and potency by reducing off-target toxicities in patients by limiting the exposure of healthy tissues to the cytotoxic drug. As a consequence of these outstanding features, significant research efforts have been devoted to the design, synthesis, and development of ADCs, and several ADCs have been approved for clinical use. The ADC field not only relies upon biology and biochemistry (antibody) but also upon organic chemistry (linker and payload). In the latter, total synthesis of natural and designed cytotoxic compounds, together with the development of novel synthetic strategies, have been key aspects of the consecution of clinical ADCs. In the case of payloads from marine origin, impressive structural architectures and biological properties are observed, thus making them prime targets for chemical synthesis and the development of ADCs. In this review, we explore the molecular and biological diversity of ADCs, with particular emphasis on those containing marine cytotoxic drugs as the payload.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Citotoxinas , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Neoplasias/tratamiento farmacológico
4.
ACS Nano ; 14(11): 15227-15240, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33174725

RESUMEN

We study the nonequilibrium diffusive release of electroneutral molecular cargo encapsulated inside hollow hydrogel nanoparticles. We propose a theoretical model that includes osmotic, steric, and short-range polymer-cargo attractions to determine the effective cargo-hydrogel interaction, ueff*, and the effective diffusion coefficient of the cargo inside the polymer network, Deff*. Using dynamical density functional theory (DDFT), we investigate the scaling of the characteristic release time, τ1/2, with the key parameters involved in the process, namely, ueff*, Deff*, and the swelling ratio. This effort represents a full study of the problem, covering a broad range of cargo sizes and providing predictions for repulsive and attractive polymer shells. Our calculations show that the release time through repulsive polymer networks scales with q2eßueff*/Deff* for ßueff* ≫ 1. In this case, the cargo molecules are excluded from the shell of the hydrogel. For attractive shells, the polymer retains the cargo molecules on its internal surface and its interior, and the release time grows exponentially with the attraction strength. The DDFT calculations are compared to an analytical model for the mean first passage time, which provides an excellent quantitative description of the kinetics for both repulsive and attractive shells without fitting parameters. Finally, we apply the method to reproduce experimental results on the release of paclitaxel from hollow poly(4-vinylpyridine) nanoparticles and find that the slow release of the drug can be explained in terms of the strong binding attraction between the drug and the polymer.

5.
Artif Cells Nanomed Biotechnol ; 48(1): 1022-1035, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32663040

RESUMEN

Here, temperature-sensitive hybrid poly(N-isopropylacrylamide) (pNIPAM) nanosystems with magnetic response are synthesised and investigated for controlled release of 5-fluorouracil (5FU) and oxaliplatin (OXA). Initially, magnetic nanoparticles (@Fe3O4) are synthesised by co-precipitation approach and functionalised with acrylic acid (AA), 3-butenoic acid (3BA) or allylamine (AL) as comonomers. The thermo-responsive polymer is grown by free radical polymerisation using N-isopropylacrylamide (NIPAM) as monomer, N,N'-methylenbisacrylamide (BIS) as cross-linker, and 2,2'-azobis(2-methylpropionamidene) (V50) as initiator. We evaluate particle morphology by transmission electron microscopy (TEM) and particle size and surface charge by dynamic light scattering (DLS) and Z-potential (ZP) measurements. These magnetically active pNIPAM@ nanoformulations are loaded with 5-fluorouracil (5FU) and oxaliplatin (OXA) to determine loading efficiency, drug content and release as well as the cytotoxicity against T-84 colon cancer cells. Our results show high biocompatibility of pNIPAM nanoformulations using human blood cells and cultured cells. Interestingly, the pNIPAM@Fe3O4-3BA + 5FU nanoformulation significantly reduces the growth of T-84 cells (57% relative inhibition of proliferation). Indeed, pNIPAM-co-AL@Fe3O4-AA nanosystems produce a slight migration of HCT15 cells in suspension in the presence of an external magnetic field. Therefore, the obtained hybrid nanoparticles can be applied as a promising biocompatible nanoplatform for the delivery of 5FU and OXA in the improvement of colon cancer treatments.


Asunto(s)
Resinas Acrílicas/química , Materiales Biocompatibles/química , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Temperatura , Liberación de Fármacos , Fluorouracilo/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
6.
Nanomaterials (Basel) ; 9(4)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010180

RESUMEN

Many therapeutically active molecules are non-soluble in aqueous systems, chemically and biologically fragile or present severe side effects. Lipid-based nanoparticle (LBNP) systems represent one of the most promising colloidal carriers for bioactive organic molecules. Their current application in oncology has revolutionized cancer treatment by improving the antitumor activity of several chemotherapeutic agents. LBNPs advantages include high temporal and thermal stability, high loading capacity, ease of preparation, low production costs, and large-scale industrial production since they can be prepared from natural sources. Moreover, the association of chemotherapeutic agents with lipid nanoparticles reduces active therapeutic dose and toxicity, decreases drug resistance and increases drug levels in tumor tissue by decreasing them in healthy tissue. LBNPs have been extensively assayed in in vitro cancer therapy but also in vivo, with promising results in some clinical trials. This review summarizes the types of LBNPs that have been developed in recent years and the main results when applied in cancer treatment, including essential assays in patients.

7.
J Org Chem ; 83(10): 5365-5383, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29676156

RESUMEN

New synthetic strategies directed toward the novel cyclopeptides solomonamides have been explored utilizing an olefin metathesis as the key reaction. In the various strategies investigated, we worked on minimally oxidized systems, and the olefin metathesis reaction demonstrated efficiency and validity for the construction of the macrocyclic core. The described synthetic strategies toward the solomonamides are well suited for the subsequent access to the natural products and represent flexible and diversity-oriented routes that allow for the generation of a variety of analogues via oxidative transformations. In addition, preliminary biological evaluations of the generated solomonamide precursors revealed antitumor activity against various tumor cell lines.


Asunto(s)
Antineoplásicos/farmacología , Péptidos Cíclicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclización , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Conformación Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad
8.
J Colloid Interface Sci ; 514: 704-714, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29310100

RESUMEN

We synthesize and characterize pH-responsive hybrid nanocomposites with SERS and drug loading applications. This colloidal system is structured by spherical 50 nm Au cores individually coated by a pH-sensitive shell of poly4-vinylpyridine (Au@p4VP). The synthesis of these hybrid nanocomposites is performed in two steps, a first one involves the fabrication of vinyl-functionalized Au nanoparticles, and a second one includes the controlled overgrowth of a p4VP shell by free radical polymerization. As a result, Au@p4VP hybrid systems with a mean diameter ranging from 150 to 57 nm are obtained upon varying the monomer concentration at synthesis. Au@p4VP nanocomposite exhibits pH-response capabilities, confirmed by cryo-TEM analysis, Small Angle X-ray Scattering (SAXS) and Zeta Potential (ZP) measurements at different pH conditions. The Au@p4VP particles also display a controllable swelling response, which depends on the cross-linker density within the polymer. This swelling capability is analyzed by Dynamic Light Scattering (DLS), and UV-vis spectroscopy at different pHs. The pH-responsive capability is here exploited for the chemical entrapment of doxorubicin hydrochloride (Dox) into the polymer network. The presence of this molecule is resolved by Surface Enhanced Raman Spectroscopy (SERS) measurements. The entrapment efficiency of Dox by the Au@p4VP system is determined via NMR spectroscopy of the supernatants.


Asunto(s)
Oro/química , Nanocompuestos/química , Polivinilos/química , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Propiedades de Superficie
9.
J Phys Chem B ; 112(17): 5363-7, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18393553

RESUMEN

Molecular planarity of penta-p-phenylene (P5P) and several substituted derivatives with four side chains of various lengths, including deca(ethylene glycol) groups, is discussed by considering the changes in the intensity ratio between the Raman bands recorded at 1280 and 1220 cm(-1). The intensity ratio between both bands I(1280)/I(1220) shows a small increase with the size of the substituent, indicating a high rigidity for all these compounds, even those with long oligo(ethylene glycol) side chains. This result is important given that these phenylene derivatives are versatile building blocks for the construction of nanometric tripod-shaped adsorbates for biological applications since the side chains should prevent the nonspecific interaction with proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...