Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Toxicol Sci ; 189(2): 237-249, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-35737426

RESUMEN

SLN360 is a liver-targeted N-acetyl galactosamine (GalNAc)-conjugated small interfering RNA (siRNA) with a promising profile for addressing lipoprotein (a)-related cardiovascular risk. Here, we describe the findings from key preclinical safety studies. In vitro, SLN360 specifically reduced LPA expression in primary human hepatocytes with no relevant off-target effects. In rats, 10 mg/kg subcutaneous SLN360 was distributed specifically to the liver and kidney (peak 126 or 246 mg/g tissue at 6 h, respectively), with <1% of peak liver levels observed in all other tested organs. In vitro, no genotoxicity and no effect on human Ether-a-go-go Related Gene currents or proinflammatory cytokine production was observed, whereas in vivo, no SLN360-specific antibodies were detected in rabbit serum. In rat and nonhuman primate 29-day toxicology studies, SLN360 was well tolerated at all doses. In both species, known GalNAc-conjugated siRNA-induced microscopic changes were observed in the kidney and liver, with small increases in alanine aminotransferase and alkaline phosphatase observed in the high dose rats. Findings were in line with previously described siRNA-GalNAc platform-related effects and all observations were reversible and considered nonadverse. In cynomolgus monkeys, liver LPA messenger RNA and serum lipoprotein (a) were significantly reduced at day 30 and after an 8-week recovery period. No dose-related changes in safety assessment endpoints were noted. No SLN360-induced cytokine production, complement activation, or micronucleus formation was observed in vivo. The toxicological profile of SLN360 presented here is restricted to known GalNAc siRNA effects and no other toxicity associated with SLN360 has been noted. The preclinical profile of SLN360 confirmed suitability for entry into clinical studies.


Asunto(s)
Acetilgalactosamina , Enfermedades Cardiovasculares , Acetilgalactosamina/metabolismo , Acetilgalactosamina/toxicidad , Alanina Transaminasa , Fosfatasa Alcalina , Animales , Citocinas , Éteres , Humanos , Lipoproteína(a) , Macaca fascicularis , ARN Mensajero , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Conejos , Ratas
2.
Atherosclerosis ; 349: 240-247, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400495

RESUMEN

BACKGROUND AND AIMS: The LPA gene encodes apolipoprotein (a), a key component of Lp(a), a potent risk factor for cardiovascular disease with no specific pharmacotherapy. Here we describe the pharmacological data for SLN360, a GalNAc-conjugated siRNA targeting LPA, designed to address this unmet medical need. METHODS: SLN360 was tested in vitro for LPA knockdown in primary hepatocytes. Healthy cynomolgus monkeys received single or multiple subcutaneous doses of the SLN360 sequence ranging from 0.1 to 9.0 mg/kg to determine the pharmacokinetic and pharmacodynamic effects. Liver mRNA and serum biomarker analyses were performed. RESULTS: In vitro, the SLN360 sequence potently reduces LPA mRNA in primary cynomolgus and human hepatocytes, while no effect was observed on the expression of APOB or PLG. In vivo, SLN360 exposure peaks 2 h after subcutaneous injection with near full elimination by 24 h. Specific LPA mRNA reduction (up to 91% 2 weeks after dosing) was observed with only the 3 mg/kg group showing appreciable return to baseline (40%). No consistent dose- or time-dependent effect on the expression of APOB, PLG or a panel of sensitive markers of liver lipid accumulation was observed. Potent (up to 95%) and long lasting (≥9 weeks) serum Lp(a) reduction was observed, peaking in all active groups at day 21. The minimally effective dose was determined to be 0.3 mg/kg with an ED50 of 0.6 mg/kg. CONCLUSIONS: SLN360 induces a sustained reduction in serum Lp(a) levels in cynomolgus monkeys following subcutaneous dosing. SLN360 has potential to address the unmet need of Lp(a) reduction in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Hiperlipidemias , Apolipoproteínas A , Apolipoproteínas B , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Humanos , Lipoproteína(a) , ARN Mensajero , ARN Interferente Pequeño/genética
4.
Eur J Cell Biol ; 91(9): 694-705, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22609186

RESUMEN

Several pathways are involved in the control of endothelial cell morphology, endothelial permeability and function in order to maintain vascular homeostasis. Here we report that protein kinase N3 (PKN3) appears to play a pivotal role in maintaining endothelial cell morphology, cell-cell junctions and motility. An RNAi-based cell biological approach in cultured human endothelial cells (HUVEC) revealed that knockdown of PKN3 expression gave rise to cells with divergent cell morphology, impaired locomotion, disturbed adherens junctions (AJ) integrity and irregular actin organization. Notably, knockdown of PKN3 cells led to improper stress fiber formation and marked adhesiveness of intercellular adherens junctions when cells became stimulated with the pro-inflammatory cytokine TNF-α. Moreover, TNF-α-induced ICAM-1 expression on the cell surface was reduced in cells with suppressed PKN3 expression. Finally, loss-of-function for PKN3 appeared to affect Pyk2 phosphorylation in endothelial cells. These observations suggest that PKN3 can be considered a novel protein implicated in remodeling the actin-adherens junction, possibly by linking ICAM-1-signaling with actin/AJ dynamics. We propose that loss of PKN3 function and concomitant aberrations in actin rearrangement may attenuate pro-inflammatory activation of endothelial cells.


Asunto(s)
Actinas/metabolismo , Uniones Adherentes/metabolismo , Células Endoteliales/metabolismo , Proteína Quinasa C/deficiencia , Proteína Quinasa C/metabolismo , Células Cultivadas , Células Endoteliales/citología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Transducción de Señal
5.
Clin Cancer Res ; 16(22): 5469-80, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21062934

RESUMEN

PURPOSE: Atu027, a novel RNA interference therapeutic, has been shown to inhibit lymph node metastasis in orthotopic prostate cancer mouse models. The aim of this study is to elucidate the pharmacologic activity of Atu027 in inhibiting hematogenous metastasis to the target organ lung in four different preclinical mouse models. EXPERIMENTAL DESIGN: Atu027 compared with vehicle or control small interfering RNA lipoplexes was tested in two experimental lung metastasis models (Lewis lung carcinoma, B16V) and spontaneous metastasis mouse models (MDA-MB-435, MDA-MB-231, mammary fat pad). Different dosing schedules (repeated low volume tail vein injections) were applied to obtain insight into effective Atu027 treatment. Primary tumor growth and lung metastasis were measured, and tissues were analyzed by immunohistochemistry and histology. In vitro studies in human umbilical vein endothelial cells were carried out to provide an insight into molecular changes on depletion of PKN3, in support of efficacy results. RESULTS: Intravenous administration of Atu027 prevents pulmonary metastasis. In particular, formation of spontaneous lung metastasis was significantly inhibited in animals with large tumor grafts as well as in mice with resected primary mammary fat pad tumors. In addition, we provide evidence that an increase in VE-cadherin protein levels as a downstream result of PKN3 target gene inhibition may change endothelial function, resulting in reduced colonization and micrometastasis formation. CONCLUSION: Atu027 can be considered as a potent drug for preventing lung metastasis formation, which might be suitable for preventing hematogenous metastasis in addition to standard cancer therapy.


Asunto(s)
Carcinoma Pulmonar de Lewis/prevención & control , Carcinoma Pulmonar de Lewis/secundario , Modelos Animales de Enfermedad , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Interferencia de ARN , ARN Interferente Pequeño/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Humanos , Inyecciones Intravenosas , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Cancer Res ; 68(23): 9788-98, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19047158

RESUMEN

We have previously described a small interfering RNA (siRNA) delivery system (AtuPLEX) for RNA interference (RNAi) in the vasculature of mice. Here we report preclinical data for Atu027, a siRNA-lipoplex directed against protein kinase N3 (PKN3), currently under development for the treatment of advanced solid cancer. In vitro studies revealed that Atu027-mediated inhibition of PKN3 function in primary endothelial cells impaired tube formation on extracellular matrix and cell migration, but is not essential for proliferation. Systemic administration of Atu027 by repeated bolus injections or infusions in mice, rats, and nonhuman primates results in specific, RNAi-mediated silencing of PKN3 expression. We show the efficacy of Atu027 in orthotopic mouse models for prostate and pancreatic cancers with significant inhibition of tumor growth and lymph node metastasis formation. The tumor vasculature of Atu027-treated animals showed a specific reduction in lymph vessel density but no significant changes in microvascular density.


Asunto(s)
Neoplasias Pancreáticas/terapia , Neoplasias de la Próstata/terapia , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Animales , Procesos de Crecimiento Celular/fisiología , Progresión de la Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Células HeLa , Humanos , Liposomas/administración & dosificación , Metástasis Linfática , Macaca fascicularis , Masculino , Ratones , Ratones SCID , Neovascularización Patológica/enzimología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Interferencia de ARN , Ratas , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...