Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(23): 10555-10565, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34100512

RESUMEN

Copper (Cu) as an excellent electrical conductor and the amphiphilic diblock copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) as a polymer electrolyte and ionic conductor can be combined with an active material in composite electrodes for polymer lithium-ion batteries (LIBs). As interfaces are a key issue in LIBs, sputter deposition of Cu contacts on PS-b-PEO thin films with high PEO fraction is investigated with in situ grazing-incidence small-angle X-ray scattering (GISAXS) to follow the formation of the Cu layer in real-time. We observe a hierarchical morphology of Cu clusters building larger Cu agglomerates. Two characteristic distances corresponding to the PS-b-PEO microphase separation and the Cu clusters are determined. A selective agglomeration of Cu clusters on the PS domains explains the origin of the persisting hierarchical morphology of the Cu layer even after a complete surface coverage is reached. The spheroidal shape of the Cu clusters growing within the first few nanometers of sputter deposition causes a highly porous Cu-polymer interface. Four growth stages are distinguished corresponding to different kinetics of the cluster growth of Cu on PS-b-PEO thin films: (I) nucleation, (II) diffusion-driven growth, (III) adsorption-driven growth, and (IV) grain growth of Cu clusters. Percolation is reached at an effective Cu layer thickness of 5.75 nm.

2.
ACS Appl Mater Interfaces ; 12(41): 46942-46952, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32941012

RESUMEN

For PbS quantum dot (QD)-based optoelectronic devices, gold is the most frequently used electrode material. In most device architectures, gold is in direct contact with the QD solid. To better understand the formation of the interface between gold and a close-packed QD layer at an early stage, in situ grazing-incidence small-angle X-ray scattering is used to observe the gold sputter deposition on a 1,2-ethanedithiol (EDT)-treated PbS QD solid. In the kinetics of gold layer growth, the forming and merging of small gold clusters (radius less than 1.6 nm) are observed at the early stages. The thereby formed medium gold clusters (radius between 1.9-2.4 nm) are influenced by the QDs' templating effect. Furthermore, simulations suggest that the medium gold clusters grow preferably along the QDs' boundaries rather than as a top coating of the QDs. When the thickness of the sputtered gold layer reaches 6.25 nm, larger gold clusters with a radius of 5.3 nm form. Simultaneously, a percolation layer with a thickness of 2.5 nm is established underneath the gold clusters. This fundamental understanding of the QD-gold interface formation will help to control the implementation of sputtered gold electrodes on close-packed QD solids in device manufacturing processes.

3.
Adv Sci (Weinh) ; 7(16): 2001117, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32832364

RESUMEN

Solvent additives are known to modify the morphology of bulk heterojunction active layers to achieve high efficiency organic solar cells. However, the knowledge about the influence of solvent additives on the morphology degradation is limited. Hence, in operando grazing-incidence small and wide angle X-ray scattering (GISAXS and GIWAXS) measurements are applied on a series of PffBT4T-2OD:PC71BM-based solar cells prepared without and with solvent additives. The solar cells fabricated without a solvent additive, with 1,8-diiodoctane (DIO), and with o-chlorobenzaldehyde (CBA) additive show differences in the device degradation and changes in the morphology and crystallinity of the active layers. The mesoscale morphology changes are correlated with the decay of the short-circuit current J sc and the evolution of crystalline grain sizes is codependent with the decay of open-circuit voltage V oc. Without additive, the loss in J sc dominates the degradation, whereas with solvent additive (DIO and CBA) the loss in V oc rules the degradation. CBA addition increases the overall device stability as compared to DIO or absence of additive.

4.
ACS Appl Mater Interfaces ; 12(1): 1132-1141, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31829550

RESUMEN

Metal top electrodes such as gold are widely used in organic solar cells. The active layer can be optimized by modifications of the polymer band gap via side-chain engineering, and low band gap polymers based on benzodithiophene units such as PTB7 and PTB7-Th are successfully used. The growth of gold contacts on PTB7 and PTB7-Th films is investigated with in situ grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) during the sputter deposition of gold. From GIWAXS, the crystal structure of the gold film is determined. Independent of the type of side chain, gold crystals form in the very early stages and improve in quality during the sputter deposition until the late stages. From GISAXS, the nanoscale structure is determined. Differences in terms of gold cluster size and growth phase limits for the two polymers are caused by the side-chain modification and result in a different surface coverage in the early phases. The changes in the diffusion and coalescence behavior of the forming gold nanoparticles cause differences in the morphology of the gold contact in the fully percolated regime, which is attributed to the different amount of thiophene rings of the side chains acting as nucleation sites.

5.
Nat Commun ; 8: 15895, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28719591

RESUMEN

Many biological materials exist in non-equilibrium states driven by the irreversible consumption of high-energy molecules like ATP or GTP. These energy-dissipating structures are governed by kinetics and are thus endowed with unique properties including spatiotemporal control over their presence. Here we show man-made equivalents of materials driven by the consumption of high-energy molecules and explore their unique properties. A chemical reaction network converts dicarboxylates into metastable anhydrides driven by the irreversible consumption of carbodiimide fuels. The anhydrides hydrolyse rapidly to the original dicarboxylates and are designed to assemble into hydrophobic colloids, hydrogels or inks. The spatiotemporal control over the formation and degradation of materials allows for the development of colloids that release hydrophobic contents in a predictable fashion, temporary self-erasing inks and transient hydrogels. Moreover, we show that each material can be re-used for several cycles.

6.
ACS Appl Mater Interfaces ; 9(6): 5629-5637, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28106380

RESUMEN

The reproducible low-cost fabrication of functional polymer-metal interfaces via self-assembly is of crucial importance in organic electronics and organic photovoltaics. In particular, submonolayer and nanogranular systems expose highly interesting electrical, plasmonic, and catalytic properties. The exploitation of their great potential requires tailoring of the structure on the nanometer scale and below. To obtain full control over the complex nanostructural evolution at the polymer-metal interface, we monitor the evolution of the metallic layer morphology with in situ time-resolved grazing-incidence small-angle X-ray scattering during sputter deposition. We identify the impact of different deposition rates on the growth regimes: the deposition rate affects primarily the nucleation process and the adsorption-mediated growth, whereas rather small effects on diffusion-mediated growth processes are observed. Only at higher rates are initial particle densities higher due to an increasing influence of random nucleation, and an earlier onset of thin film percolation occurs. The obtained results are discussed to identify optimized morphological parameters of the gold cluster ensemble relevant for various applications as a function of the effective layer thickness and deposition rate. Our study opens up new opportunities to improve the fabrication of tailored metal-polymer nanostructures for plasmonic-enhanced applications such as organic photovoltaics and sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA