Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 36(47): 12027-12043, 2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27881786

RESUMEN

Chorea-acanthocytosis (ChAc) is a fatal neurological disorder characterized by red blood cell acanthocytes and striatal neurodegeneration. Recently, severe cell membrane disturbances based on depolymerized cortical actin and an elevated Lyn kinase activity in erythrocytes from ChAc patients were identified. How this contributes to the mechanism of neurodegeneration is still unknown. To gain insight into the pathophysiology, we established a ChAc patient-derived induced pluripotent stem cell model and an efficient differentiation protocol providing a large population of human striatal medium spiny neurons (MSNs), the main target of neurodegeneration in ChAc. Patient-derived MSNs displayed enhanced neurite outgrowth and ramification, whereas synaptic density was similar to controls. Electrophysiological analysis revealed a pathologically elevated synaptic activity in ChAc MSNs. Treatment with the F-actin stabilizer phallacidin or the Src kinase inhibitor PP2 resulted in the significant reduction of disinhibited synaptic currents to healthy control levels, suggesting a Src kinase- and actin-dependent mechanism. This was underlined by increased G/F-actin ratios and elevated Lyn kinase activity in patient-derived MSNs. These data indicate that F-actin stabilization and Src kinase inhibition represent potential therapeutic targets in ChAc that may restore neuronal function. SIGNIFICANCE STATEMENT: Chorea-acanthocytosis (ChAc) is a fatal neurodegenerative disease without a known cure. To gain pathophysiological insight, we newly established a human in vitro model using skin biopsies from ChAc patients to generate disease-specific induced pluripotent stem cells (iPSCs) and developed an efficient iPSC differentiation protocol providing striatal medium spiny neurons. Using patch-clamp electrophysiology, we detected a pathologically enhanced synaptic activity in ChAc neurons. Healthy control levels of synaptic activity could be restored by treatment of ChAc neurons with the F-actin stabilizer phallacidin and the Src kinase inhibitor PP2. Because Src kinases are involved in bridging the membrane to the actin cytoskeleton by membrane protein phosphorylation, our data suggest an actin-dependent mechanism of this dysfunctional phenotype and potential treatment targets in ChAc.


Asunto(s)
Actinas/metabolismo , Cuerpo Estriado/patología , Neuronas GABAérgicas/patología , Células Madre Pluripotentes Inducidas/patología , Neuroacantocitosis/metabolismo , Neuroacantocitosis/patología , Familia-src Quinasas/metabolismo , Adulto , Diferenciación Celular , Células Cultivadas , Cuerpo Estriado/metabolismo , Femenino , Neuronas GABAérgicas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas , Transmisión Sináptica , Familia-src Quinasas/antagonistas & inhibidores
2.
J Neurochem ; 137(5): 756-69, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26896818

RESUMEN

Endocrine fibroblast growth factor 23 (FGF23) is predominantly secreted by osteocytes and facilitates renal phosphate excretion. However, FGF23 is also present in cerebrospinal fluid. In chronic kidney disease, FGF23 serum levels are excessively elevated and associated with learning and memory deficits. Structural plasticity of the hippocampus such as formation of new synapses or an altered dendritic arborization comprises a cellular and morphological correlate of memory formation. Therefore, we hypothesize that FGF23 alters hippocampal neuron morphology and synapses. To address this, we prepared primary murine hippocampal cultures and incubated them with recombinant FGF23 alone or together with a soluble isoform of its co-receptor α-Klotho. Neuronal expression of a fluorescent reporter allowed for a detailed evaluation of the neuronal morphology by Sholl analysis. Additionally, we evaluated synaptic density, identified by stainings, for synaptic markers. We show an enhanced number of primary neurites combined with a reduced arborization, resulting in a less complex morphology of neurons treated with FGF23. Moreover, FGF23 enhances the synaptic density in a FGF-receptor (FGF-R) dependent manner. Finally, we addressed the corresponding signaling events downstream of FGF-R employing a combination of western blots and quantitative immunofluorescence. Interestingly, FGF23 induces phospholipase Cγ activity in primary hippocampal neurons. Co-application of soluble α-Klotho leads to activation of the Akt-pathway and modifies FGF23-impact on neuronal morphology and synaptic density. Compared with other FGFs, this alternative signaling pattern is a possible reason for differential effects of FGF23 on hippocampal neurons and may thereby contribute to learning and memory deficits in chronic kidney disease patients. In this study, we show that fibroblast growth factor 23 inhibits neuronal ramification and enhances the synaptic density in primary hippocampal cultures accompanied by phospholipase Cγ-activation. Co-application of the co-receptor α-Klotho leads to an Akt-activation and further modifies neuronal morphology and number of synapses. Those effects provide a mechanistic basis for memory deficits in patients suffering from chronic kidney disease (CKD) characterized by excessively elevated FGF23 levels as well as memory deficits.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Células Cultivadas , Factor-23 de Crecimiento de Fibroblastos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinapsis/fisiología
3.
PLoS One ; 8(12): e82871, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358231

RESUMEN

Nuclear bodies are large sub-nuclear structures composed of RNA and protein molecules. The Survival of Motor Neuron (SMN) protein localizes to Cajal bodies (CBs) and nuclear gems. Diminished cellular concentration of SMN is associated with the neurodegenerative disease Spinal Muscular Atrophy (SMA). How nuclear body architecture and its structural components influence neuronal differentiation remains elusive. In this study, we analyzed the effects of SMN and two of its interaction partners in cellular models of neuronal differentiation. The nuclear 23 kDa isoform of Fibroblast Growth Factor - 2 (FGF-2(23)) is one of these interacting proteins - and was previously observed to influence nuclear bodies by destabilizing nuclear gems and mobilizing SMN from Cajal bodies (CBs). Here we demonstrate that FGF-2(23) blocks SMN-promoted neurite outgrowth, and also show that SMN disrupts FGF-2(23)-dependent transcription. Our results indicate that FGF-2(23) and SMN form an inactive complex that interferes with neuronal differentiation by mutually antagonizing nuclear functions. Coilin is another nuclear SMN binding partner and a marker protein for Cajal bodies (CBs). In addition, coilin is essential for CB function in maturation of small nuclear ribonucleoprotein particles (snRNPs). The role of coilin outside of Cajal bodies and its putative impacts in tissue differentiation are poorly defined. The present study shows that protein levels of nucleoplasmic coilin outside of CBs decrease during neuronal differentiation. Overexpression of coilin has an inhibitory effect on neurite outgrowth. Furthermore, we find that nucleoplasmic coilin inhibits neurite outgrowth independent of SMN binding revealing a new function for coilin in neuronal differentiation.


Asunto(s)
Diferenciación Celular/genética , Núcleo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Neurogénesis/genética , Neuronas/fisiología , Proteínas del Complejo SMN/fisiología , Animales , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Neuritas/fisiología , Proteínas Nucleares/metabolismo , Células PC12 , Unión Proteica , Ratas , Proteínas del Complejo SMN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...