Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(9): 241268, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39263452

RESUMEN

Snake venom is an ecologically relevant functional trait directly linked with a snake's fitness and survival, facilitating predation and defence. Snake venom variation occurs at all taxonomic levels, but the study at the intraspecific level is still in its early stages. The common adder (Vipera berus) exhibits considerable variation in colour phenotypes across its distribution range. Melanistic (fully black) individuals are the subject of myths and fairytales, and in German folklore such 'hell adders' are considered more toxic than their normally coloured conspecifics despite any formal investigation. Here, we provide the first comparative analysis of venoms from melanistic and normally coloured common adders. Specifically, we compared the venom profiles by sodium dodecylsulfate polyacrylamide gel electrophoresis and reversed-phase high-performance liquid chromatography and tested the venoms' protease, phospholipase A2 and cytotoxic activities. Phospholipase A2 activity was similar in both phenotypes, whereas general protease activity was higher in the melanistic venom, which was also more cytotoxic at two concentrations (6.25 and 12.5 µg ml-1). These minor differences between the venoms of melanistic and normally coloured adders are unlikely to be of clinical relevance in the context of human envenomation. In light of our results, the claim that melanistic adders produce more toxic venom than their normally coloured conspecifics appears rooted entirely in folklore.

2.
NPJ Biodivers ; 3(1): 25, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271930

RESUMEN

Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.

3.
Int J Biol Macromol ; 278(Pt 4): 135041, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182889

RESUMEN

Snakebite primarily impacts rural communities of Africa, Asia, and Latin America. The sharp-nosed viper (Deinagkistrodon acutus) is among the snakes of highest medical importance in Asia. Despite various studies on its venom using modern venomics techniques, a comprehensive understanding of composition and function of this species' venom remains lacking. We combined proteogenomics with extensive bioactivity profiling to present the first genome-level catalogue of D. acutus venom proteins and their exochemistry. Our analysis identified an unusually simple venom containing 45 components from 20 distinct protein families. Relative toxin abundances indicate that C-type lectin and C-type lectin-related protein (CTL), snake venom metalloproteinase (svMP), snake venom serine protease (svSP), and phospholipase A2 (PLA2) constitute 90 % of the venom. Bioassays targeting key aspects of viperid envenomation showed considerable concentration-dependent cytotoxicity, particularly in kidney and lung cells, and potent protease and PLA2 activity. Factor Xa and thrombin activities were minor, and no plasmin activity was observed. Effects on haemolysis, intracellular calcium (Ca2+) release, and nitric oxide (NO) synthesis were negligible. Our analysis provides the first holistic genome-based overview of the toxin arsenal of D. acutus, predicting the molecular and functional basis of its life-threatening effects, and opens novel avenues for treating envenomation by this highly dangerous snake.


Asunto(s)
Proteogenómica , Animales , Proteogenómica/métodos , Fosfolipasas A2/metabolismo , Humanos , Viperidae/metabolismo , Serina Proteasas/metabolismo , Serina Proteasas/genética , Crotalinae , Serpientes Venenosas
4.
Commun Biol ; 7(1): 981, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39134630

RESUMEN

Neuropteran larvae are fierce predators that use venom to attack and feed on arthropod prey. Neuropterans have adapted to diverse and sometimes extreme habitats, suggesting their venom may have evolved accordingly, but the ecology and evolution of venom deployment in different families is poorly understood. We applied spatial transcriptomics, proteomics, morphological analysis, and bioassays to investigate the venom systems in the antlion Euroleon nostras and the lacewing Chrysoperla carnea, which occupy distinct niches. Although the venom system morphology was similar in both species, we observed remarkable differences at the molecular level. E. nostras produces particularly complex venom secreted from three different glands, indicating functional compartmentalization. Furthermore, E. nostras venom and digestive tissues were devoid of bacteria, strongly suggesting that all venom proteins are of insect origin rather than the products of bacterial symbionts. We identified several toxins exclusive to E. nostras venom, including phospholipase A2 and several undescribed proteins with no homologs in the C. carnea genome. The compositional differences have significant ecological implications because only antlion venom conferred insecticidal activity, indicating its use for the immobilization of large prey. Our results indicate that molecular venom evolution plays a role in the adaptation of antlions to their unique ecological niche.


Asunto(s)
Venenos de Artrópodos , Conducta Predatoria , Animales , Venenos de Artrópodos/metabolismo , Venenos de Artrópodos/genética , Ecosistema , Insectos/fisiología , Larva/fisiología , Proteómica , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Transcriptoma
5.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125859

RESUMEN

Venoms are a complex cocktail of potent biomolecules and are present in many animal lineages. Owed to their translational potential in biomedicine, agriculture and industrial applications, they have been targeted by several biodiscovery programs in the past. That said, many venomous animals are relatively small and deliver minuscule venom yields. Thus, the most commonly employed activity-guided biodiscovery pipeline cannot be applied effectively. Cell-free protein production may represent an attractive tool to produce selected venom components at high speed and without the creation of genetically modified organisms, promising rapid and highly efficient access to biomolecules for bioactivity studies. However, these methods have only sporadically been used in venom research and their potential remains to be established. Here, we explore the ability of a prokaryote-based cell-free system to produce a range of venom toxins of different types and from various source organisms. We show that only a very limited number of toxins could be expressed in small amounts. Paired with known problems to facilitate correct folding, our preliminary investigation underpins that venom-tailored cell-free systems probably need to be developed before this technology can be employed effectively in venom biodiscovery.


Asunto(s)
Sistema Libre de Células , Ponzoñas , Animales , Ponzoñas/metabolismo
6.
Toxicon ; 248: 108033, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038663

RESUMEN

Scorpion sting is a medical burden globally but especially frequent hotspots of scorpion biodiversity. In Iran, one of those hotspot countries, many fatalities occur in the South as well as the Southwest and are thought to be caused by Hemiscorpius lepturus. Accordingly, those are used for antivenom production. However, recent surveys revealed that indeed a different species Hemiscorpius acanthocercus is responsible for most accidents in the South, while H. lepturus is primarily causing the fatalities in the Southwest and thus Iranian scorpion antivenom needs to be refined in that respect. Such a refined antivenom would need to cover both species of Hemiscorpius. In response, the Iranian Ministry of Health requested the adjustment of the production line from local antivenom suppliers but until today no action has been taken.


Asunto(s)
Antivenenos , Picaduras de Escorpión , Venenos de Escorpión , Escorpiones , Antivenenos/uso terapéutico , Irán , Animales , Picaduras de Escorpión/tratamiento farmacológico , Humanos
7.
iScience ; 27(7): 110209, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39021791

RESUMEN

Arthropod venoms contain bioactive molecules attractive for biomedical applications. However, few of these have been isolated, and only a tiny number has been characterized. Pseudoscorpions are small arachnids whose venom has been largely overlooked. Here, we present the first structural and functional assessment of the checacin toxin family, discovered in the venom of the house pseudoscorpion (Chelifer cancroides). We combined in silico and in vitro analyses to establish their bioactivity profile against microbes and various cell lines. This revealed inhibitory effects against bacteria and fungi. We observed cytotoxicity against specific cell types and effects involving second messengers. Our work provides insight into the biomedical potential and evolution of pseudoscorpion venoms. We propose that plesiotypic checacins evolved to defend the venom gland against infection, whereas apotypic descendants evolved additional functions. Our work highlights the importance of considering small and neglected species in biodiscovery programs.

8.
Toxicon ; 247: 107810, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38880255

RESUMEN

Spider-derived peptides with insecticidal, antimicrobial and/or cytolytic activities, also known as spider venom antimicrobial peptides (AMPs), can be found in the venoms of RTA-clade spiders. They show translational potential as therapeutic leads. A set of 52 AMPs has been described in the Chinese wolf spider (Lycosa shansia), and many have been shown to exhibit antibacterial effects. Here we explored the potential to enhance their antimicrobial activity using bioengineering. We generated a panel of artificial derivatives of an A-family peptide and screened their activity against selected microbial pathogens, vertebrate cells and insects. In several cases, we increased the antimicrobial activity of the derivatives while retaining the low cytotoxicity of the parental molecule. Furthermore, we injected the peptides into adult Drosophila suzukii and found no evidence of insecticidal effects, confirming the low levels of toxicity. Our data therefore suggest that spider venom linear peptides naturally defend the venom gland against microbial colonization and can be modified into more potent antimicrobial agents that could help to battle infectious diseases in the future.


Asunto(s)
Venenos de Araña , Arañas , Animales , Venenos de Araña/química , Venenos de Araña/farmacología , Venenos de Araña/toxicidad , Drosophila/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Antiinfecciosos/farmacología , Insecticidas/farmacología , Humanos
9.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38535796

RESUMEN

Nature abounds with an unprecedented diversity of biomolecular innovation [...].


Asunto(s)
Toxinas Biológicas , Animales
11.
Front Mol Biosci ; 10: 1254058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719269

RESUMEN

Introduction: Snakebite is a neglected tropical disease and a globally important driver of death and morbidity. Vipers of the genus Macrovipera (Viperidae: Viperinae) are among the snakes of higher medical importance in the Old World. Despite the medical relevance of Macrovipera venoms, the knowledge regarding them is heterogeneously distributed with virtually all works conducted so far focusing on subspecies of Macrovipera lebetinus, while other species within the genus are largely overlooked. Here we present the first proteomic evaluation of the venom from the Greek endemic Milos viper (Macrovipera schweizeri). In line with clinical symptoms typically elicited by Macrovipera envenomations, Milos viper venom primarily comprises coagulotoxic and cytotoxic protein families, such as metalloproteinases (svMP) and serine proteases (svSP). Methods: We conducted comparative bioactivity assays on venoms from M. schweizeri and the M. lebetinus subspecies M. lebetinus cernovi, M. lebetinus obtusa, and M. lebetinus turanica, and showed that they all exhibit similarities in levels of cytotoxicity proteolytic activity, and inhibition of prokaryotic growth. Lastly, we compared Macrovipera venom profiles by 1D-SDS-PAGE and RP-HPLC, as well as our proteomic data with previously published Macrovipera venom proteomes. Results and discussion: The analyzes performed to reveal that a general venom profile seems to be conserved across blunt-nosed vipers, and that, M. schweizeri envenomations, similarly to those caused by other blunt-nosed vipers, are able to cause significant tissue damage. The present work represents an important starting point for the development of comparative studies across the full taxonomic range of the genus Macrovipera and can potentially help optimize the treatment of envenomations caused by M. schweizeri.

12.
Microorganisms ; 11(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630627

RESUMEN

Honey bees coexist with fungi that colonize hive surfaces and pollen. Some of these fungi are opportunistic pathogens, but many are beneficial species that produce antimicrobial compounds for pollen conservation and the regulation of pathogen populations. In this study, we tested the in vitro antimicrobial activity of Talaromyces purpureogenus strains isolated from bee bread against Paenibacillus alvei (associated with European foulbrood disease) and three Aspergillus species that cause stonebrood disease. We found that methanol extracts of T. purpureogenus strains B18 and B195 inhibited the growth of P. alvei at a concentration of 0.39 mg/mL. Bioactivity-guided dereplication revealed that the activity of the crude extracts correlated with the presence of diketopiperazines, a siderophore, and three unknown compounds. We propose that non-pathogenic fungi such as Talaromyces spp. and their metabolites in bee bread could be an important requirement to prevent disease. Agricultural practices involving the use of fungicides can disrupt the fungal community and thus negatively affect the health of bee colonies.

13.
Toxicon ; 233: 107255, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37591328

RESUMEN

Snakebite is a global health problem with disastrous consequences. Accordingly, venoms plus their function and clinical aspects were intensively studied for several snakes, primarily with proteroglyphous and solenoglyphous dentition. Much less is known about the venoms from most opisthoglyphous (rear-fanged) snakes and it is often questionable which symptoms they may cause. Here, we provide the first description of the envenomation symptoms caused by a bite of the Eastern Montpellier snake Malpolon insignitus from Croatia. The clinical manifestations elicited by the bite were only local, and included bleeding, pulsatility and paresthesia, followed by sweating and signs of inflammation. The observed features subsided quickly, and the patient recovered fully with no long-term illness. Therefore, we conclude that M. insignitus does not represent a substantial (i.e. life threatening or morbidity-causing) threat. However, as related species in the Malpolon genus are known to be capable to deliver neurotoxic envenoming, we recommend to nevertheless carefully interact with M. insignitus and recommend that future studies should unveil its venom composition.


Asunto(s)
Colubridae , Mordeduras de Serpientes , Animales , Humanos , Croacia , Inflamación
14.
Toxins (Basel) ; 15(5)2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37235338

RESUMEN

The venoms of spiders from the RTA (retro-lateral tibia apophysis) clade contain diverse short linear peptides (SLPs) that offer a rich source of therapeutic candidates. Many of these peptides have insecticidal, antimicrobial and/or cytolytic activities, but their biological functions are unclear. Here, we explore the bioactivity of all known members of the A-family of SLPs previously identified in the venom of the Chinese wolf spider (Lycosa shansia). Our broad approach included an in silico analysis of physicochemical properties and bioactivity profiling for cytotoxic, antiviral, insecticidal and antibacterial activities. We found that most members of the A-family can form α-helices and resemble the antibacterial peptides found in frog poison. The peptides we tested showed no cytotoxic, antiviral or insecticidal activities but were able to reduce the growth of bacteria, including clinically relevant strains of Staphylococcus epidermidis and Listeria monocytogenes. The absence of insecticidal activity may suggest that these peptides have no role in prey capture, but their antibacterial activity may help to defend the venom gland against infection.


Asunto(s)
Insecticidas , Venenos de Araña , Arañas , Animales , Ponzoñas , Péptidos/farmacología , Péptidos/química , Insecticidas/química , Antibacterianos/farmacología , Antibacterianos/química , Arañas/química , Venenos de Araña/farmacología , Venenos de Araña/química
15.
Front Bioeng Biotechnol ; 11: 1166601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207126

RESUMEN

Venoms are complex chemical arsenals that have evolved independently many times in the animal kingdom. Venoms have attracted the interest of researchers because they are an important innovation that has contributed greatly to the evolutionary success of many animals, and their medical relevance offers significant potential for drug discovery. During the last decade, venom research has been revolutionized by the application of systems biology, giving rise to a novel field known as venomics. More recently, biotechnology has also made an increasing impact in this field. Its methods provide the means to disentangle and study venom systems across all levels of biological organization and, given their tremendous impact on the life sciences, these pivotal tools greatly facilitate the coherent understanding of venom system organization, development, biochemistry, and therapeutic activity. Even so, we lack a comprehensive overview of major advances achieved by applying biotechnology to venom systems. This review therefore considers the methods, insights, and potential future developments of biotechnological applications in the field of venom research. We follow the levels of biological organization and structure, starting with the methods used to study the genomic blueprint and genetic machinery of venoms, followed gene products and their functional phenotypes. We argue that biotechnology can answer some of the most urgent questions in venom research, particularly when multiple approaches are combined together, and with other venomics technologies.

16.
Toxins (Basel) ; 14(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36548715

RESUMEN

The venom of honeybees is composed of numerous peptides and proteins and has been used for decades as an anti-inflammatory and anti-cancer agent in traditional medicine. However, the bioactivity of specific biomolecular components has been evaluated for the predominant constituent, melittin. So far, only a few melittin-like peptides from solitary bee species have been investigated, and the molecular mechanisms of bee venoms as therapeutic agents remain largely unknown. Here, the preclinical pharmacological activities of known and proteo-transcriptomically discovered new melittin variants from the honeybee and more ancestral variants from phylogenetically older solitary bees were explored in the context of cancer and inflammation. We studied the effects of melittin peptides on cytotoxicity, second messenger release, and inflammatory markers using primary human cells, non-cancer, and cancerous cell lines. Melittin and some of its variants showed cytotoxic effects, induced Ca2+ signaling and inhibited cAMP production, and prevented LPS-induced NO synthesis but did not affect the IP3 signaling and pro-inflammatory activation of endothelial cells. Compared to the originally-described melittin, some phylogenetically more ancestral variants from solitary bees offer potential therapeutic modalities in modulating the in vitro inflammatory processes, and hindering cancer cell viability/proliferation, including aggressive breast cancers, and are worth further investigation.


Asunto(s)
Antiinflamatorios , Antineoplásicos , Venenos de Abeja , Abejas , Meliteno , Animales , Humanos , Venenos de Abeja/farmacología , Venenos de Abeja/química , Células Endoteliales , Meliteno/química , Meliteno/aislamiento & purificación , Meliteno/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Línea Celular Tumoral
17.
Toxins (Basel) ; 14(12)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36548743

RESUMEN

The venoms of ants (Formicidae) are a promising source of novel bioactive molecules with potential for clinical and agricultural applications. However, despite the rich diversity of ant species, only a fraction of this vast resource has been thoroughly examined in bioprospecting programs. Previous studies focusing on the venom of Central European ants (subfamily Myrmicinae) identified a number of short linear decapeptides and nonapeptides resembling antimicrobial peptides (AMPs). Here, we describe the in silico approach and bioactivity profiling of 10 novel AMP-like peptides from the fellow Central European myrmicine ants Myrmica rubra and Myrmica ruginodis. Using the sequences of known ant venom peptides as queries, we screened the venom gland transcriptomes of both species. We found transcripts of nine novel decapeptides and one novel nonapeptide. The corresponding peptides were synthesized for bioactivity profiling in a broad panel of assays consisting of tests for cytotoxicity as well as antiviral, insecticidal, and antimicrobial activity. U-MYRTX-Mrug5a showed moderately potent antimicrobial effects against several bacteria, including clinically relevant pathogens such as Listeria monocytogenes and Staphylococcus epidermidis, but high concentrations showed negligible cytotoxicity. U-MYRTX-Mrug5a is, therefore, a probable lead for the development of novel peptide-based antibiotics.


Asunto(s)
Venenos de Hormiga , Antiinfecciosos , Hormigas , Animales , Hormigas/genética , Péptidos/química , Transcriptoma , Ponzoñas , Venenos de Hormiga/toxicidad , Venenos de Hormiga/química
18.
Viruses ; 14(11)2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36366550

RESUMEN

Influenza is a severe contagious disease caused by influenza A and B viruses. The WHO estimates that annual outbreaks lead to 3-5 million severe infections of which approximately 10% lead to the death of the patient. While vaccination is the cornerstone of prevention, antiviral drugs represent the most important treatment option of acute infections. Only two classes of drugs are currently approved for the treatment of influenza in numerous countries: M2 channel blockers and neuraminidase inhibitors. In some countries, additional compounds such as the recently developed cap-dependent endonuclease inhibitor baloxavir marboxil or the polymerase inhibitor favipiravir are available. However, many of these compounds suffer from poor efficacy, if not applied early after infection. Furthermore, many influenza strains have developed resistances and lost susceptibility to these compounds. As a result, there is an urgent need to develop new anti-influenza drugs against a broad spectrum of subtypes. Natural products have made an important contribution to the development of new lead structures, particularly in the field of infectious diseases. Therefore, this article aims to review the research on the identification of novel lead structures isolated from natural resources suitable to treat influenza infections.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Gripe Humana/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Recursos Naturales
19.
Gigascience ; 112022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35640874

RESUMEN

Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.


Asunto(s)
Proteómica , Ponzoñas , Animales , Investigación , Serpientes/genética , Transcriptoma , Ponzoñas/química , Ponzoñas/genética
20.
Toxins (Basel) ; 14(5)2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35622604

RESUMEN

Animal venoms are a rich source of novel biomolecules with potential applications in medicine and agriculture. Ants are one of the most species-rich lineages of venomous animals. However, only a fraction of their biodiversity has been studied so far. Here, we investigated the venom components of two myrmicine (subfamily Myrmicinae) ants: Myrmica rubra and Myrmica ruginodis. We applied a venomics workflow based on proteotranscriptomics and found that the venoms of both species are composed of several protein classes, including venom serine proteases, cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 (CAP) superfamily proteins, Kunitz-type serine protease inhibitors and venom acid phosphatases. Several of these protein classes are known venom allergens, and for the first time we detected phospholipase A1 in the venom of M. ruginodis. We also identified two novel epidermal growth factor (EGF) family toxins in the M. ruginodis venom proteome and an array of additional EGF-like toxins in the venom gland transcriptomes of both species. These are similar to known toxins from the related myrmicine ant, Manica rubida, and the myrmecine (subfamily Myrmeciinae) Australian red bulldog ant Myrmecia gullosa, and are possibly deployed as weapons in defensive scenarios or to subdue prey. Our work suggests that M.rubra and M. ruginodis venoms contain many enzymes and other high-molecular-weight proteins that cause cell damage. Nevertheless, the presence of EGF-like toxins suggests that myrmicine ants have also recruited smaller peptide components into their venom arsenal. Although little is known about the bioactivity and function of EGF-like toxins, their presence in myrmicine and myrmecine ants suggests they play a key role in the venom systems of the superfamily Formicoidea. Our work adds to the emerging picture of ant venoms as a source of novel bioactive molecules and highlights the need to incorporate such taxa in future venom bioprospecting programs.


Asunto(s)
Venenos de Hormiga , Hormigas , Animales , Australia , Biodiversidad , Factor de Crecimiento Epidérmico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA