Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
ACS Appl Mater Interfaces ; 11(49): 45442-45454, 2019 Dec 11.
Article En | MEDLINE | ID: mdl-31718155

Folic acid amine-functionalized metal-organic framework (FOLA@NH2-Eu:TMU-62) with luminescent properties loaded with 5-fluorouracil (5-Fu), as an anticancer medication, was used to construct a new cancer targeted drug delivery system in the present study. The 5-Fu release from this targeted carrier along with MTT assay and trypan blue dye exclusion test results also exhibited pH-controlled characteristics of the given carrier in acidic environments, which is very suitable for targeting solid tumors. Then, the inhibitory action of 5-Fu-loaded FOLA@NH2-Eu:TMU-62 for Michigan Cancer Foundation-7 (MCF7) cell migration was explored according to scratch wound healing assays. Based on the results, the FOLA@NH2-Eu:TMU-62 carrier was not toxic for MCF-10A normal cells, but it was significantly toxic for MCF-7 breast cancer ones, revealing that the FOLA@NH2-Eu:TMU-62 carrier could be utilized in accurate cancer treatments through apoptotic pathways with higher reactive oxygen species compared with 5-Fu alone. This cancer-targeted design of FOLA@NH2-Eu:TMU-62 could thus pave the way for synergistic effects of targeting as well as organized release capabilities.


Apoptosis/drug effects , Biocompatible Materials/pharmacology , Drug Carriers/pharmacology , Metal-Organic Frameworks/pharmacology , Amines/chemistry , Biocompatible Materials/chemistry , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Drug Carriers/chemistry , Drug Liberation , Female , Fluorouracil/chemistry , Fluorouracil/pharmacology , Folic Acid/chemistry , Humans , Luminescent Agents/chemistry , Luminescent Agents/pharmacology , MCF-7 Cells , Metal-Organic Frameworks/chemistry , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism
2.
ACS Appl Mater Interfaces ; 11(16): 14759-14773, 2019 Apr 24.
Article En | MEDLINE | ID: mdl-30924640

This study proposes an approach for improving catalysis of oxidative desulfurization (ODS) of diesel fuel under mild reaction conditions and enhancing supercapacitor (SC) properties for storage of a high amount of charge. Our approach takes advantage of a novel dual-purpose cobalt(II)-based metal-organic framework (MOF), [Co(2-ATA)2(4-bpdb)4] n (2-ATA: 2-aminoterephthalic acid and 4-bpdb: N, N-bis-pyridin-4-ylmethylene-hydrazine as the pillar spacer), which is called NH2-TMU-53. Due to the stability of the used compound, we decided to evaluate the capability of this compound as a novel electrode material for storing energy in supercapacitors, and also to investigate its catalytic capabilities. It is demonstrated that the addition of H2O2 as an oxidant enhances the efficiency of sulfur removal, which indicates that NH2-TMU-53 can efficiently catalyze the ODS reaction. According to the kinetics results, the catalyzed process follows pseudo-first-order kinetics and exhibits 15.57 kJ mol-1 activation energy. Moreover, with respect to the radical scavenging evaluations, the process is governed by direct catalytic oxidation rather than indirect oxidative attack of radicals. Furthermore, NH2-TMU-53 was applied as an electrode material for energy storage in SCs. This material is used in the three-electrode system and shows a specific capacitance of 325 F g-1 at 5 A g-1 current density. The asymmetric supercapacitor of NH2-TMU-53//activated carbon evaluates the further electrochemical activity in real applications, delivers the high power density (2.31 kW kg-1), high energy density (50.30 Wh kg-1), and long cycle life after 6000 cycles (90.7%). Also, the asymmetric supercapacitor practical application was demonstrated by a glowing red light-emitting diode and driving a mini-rotating motor. These results demonstrate that the fabricated device presents a good capacity for energy storage without pyrolyzing the MOF structures. These findings can guide the development of high-performance SCs toward a new direction to improve their practical applications and motivate application of MOFs without pyrolysis or calcination.

...