Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (211)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39311582

RESUMEN

Electrical Impedance Tomography (EIT) is a groundbreaking, non-invasive, and radiation-free imaging technique for continuous, real-time ventilation monitoring. It also has an application in pulmonary perfusion monitoring. EIT quantifies ventilation and perfusion patterns across the lung from the measurement and processing of impedance changes in the thorax. It is a powerful tool for clinicians to visualize breath-by-breath changes in pulmonary function. An innovative application of EIT is its ability to assess pulmonary perfusion using the kinetic analysis of a hypertonic solution injection during a breath-hold. The solution generates an impedance change in the thorax as it circulates through the pulmonary vasculature. This indirect method allows for the estimation of perfusion patterns, contributing significantly to our understanding of pulmonary blood flow dynamics at the bedside. EIT is not just a tool for monitoring but also can be critical for the diagnosis of respiratory pathologies such as pneumothorax and bronchial intubation. It can help identify the etiology of ventilation/perfusion (V/Q) mismatch in patients receiving invasive mechanical ventilation, which is not possible with other diagnostic tools. Moreover, EIT can assist in the individual optimization of ventilator settings, such as Positive End-Expiratory Pressure (PEEP) titration and tidal volume improving oxygenation and lung health in critical care. In summary, EIT represents a paradigm shift in bedside pulmonary monitoring and diagnostics. Its non-invasive nature and immediacy of data make EIT an indispensable tool in modern respiratory medicine. With its growing applications, EIT will be pivotal in advancing our understanding of and approach to respiratory care, particularly in intensive care settings.


Asunto(s)
Impedancia Eléctrica , Pulmón , Tomografía , Humanos , Tomografía/métodos , Pulmón/fisiología , Pulmón/diagnóstico por imagen , Pulmón/irrigación sanguínea , Unidades de Cuidados Intensivos , Monitoreo Fisiológico/métodos
2.
J Clin Med ; 12(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36835785

RESUMEN

(1) The use of high-flow nasal cannula (HFNC) combined with frequent respiratory monitoring in patients with acute hypoxic respiratory failure due to COVID-19 has been shown to reduce intubation and mechanical ventilation. (2) This prospective, single-center, observational study included consecutive adult patients with COVID-19 pneumonia treated with a high-flow nasal cannula. Hemodynamic parameters, respiratory rate, inspiratory fraction of oxygen (FiO2), saturation of oxygen (SpO2), and the ratio of oxygen saturation to respiratory rate (ROX) were recorded prior to treatment initiation and every 2 h for 24 h. A 6-month follow-up questionnaire was also conducted. (3) Over the study period, 153 of 187 patients were eligible for HFNC. Of these patients, 80% required intubation and 37% of the intubated patients died in hospital. Male sex (OR = 4.65; 95% CI [1.28; 20.6], p = 0.03) and higher BMI (OR = 2.63; 95% CI [1.14; 6.76], p = 0.03) were associated with an increased risk for new limitations at 6-months after hospital discharge. (4) 20% of patients who received HFNC did not require intubation and were discharged alive from the hospital. Male sex and higher BMI were associated with poor long-term functional outcomes.

5.
Respir Care ; 66(5): 758-768, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33298622

RESUMEN

BACKGROUND: Dual-patient, single-ventilator protocols (ie, protocols to ventilate 2 patients with a single conventional ventilator) may be required in times of crisis. This study demonstrates a means to titrate peak inspiratory pressure (PIP), PEEP, and [Formula: see text] for test lungs ventilated via a dual-patient, single-ventilator circuit. METHODS: This prospective observational study was conducted using a ventilator connected to 2 test lungs. Changes in PIP, PEEP, and [Formula: see text] were made to the experimental lung, while no changes were made to the control lung. Measurements were obtained simultaneously from each test lung. PIP was titrated using 3D-printed resistors added to the inspiratory circuit. PEEP was titrated using expiratory circuit tubing with an attached manual PEEP valve. [Formula: see text] was titrated by using a splitter added to the ventilator tubing. RESULTS: PIP, PEEP, and [Formula: see text] were reliably and incrementally titratable in the experimental lung, with some notable but manageable changes in pressure and [Formula: see text] documented in the control lung during these titrations. Similar results were measured in lungs with identical and different compliances. CONCLUSIONS: Pressures and [Formula: see text] can be reliably adjusted when utilizing a dual-patient, single-ventilator circuit with simple, low-cost modifications to the circuit. This innovation could potentially be lifesaving in a resource-limited or crisis setting. Understanding the interactions of these circuits is imperative for making their use safer.


Asunto(s)
Respiración con Presión Positiva , Ventiladores Mecánicos , Humanos , Pulmón , Respiración , Respiración Artificial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA