Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nat Aging ; 1(6): 506-520, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-35291561

RESUMEN

Apolipoprotein E4 (APOE4), the main susceptibility gene for Alzheimer's disease (AD), leads to vascular dysfunction, amyloid-ß pathology, neurodegeneration and dementia. How these different pathologies contribute to advanced-stage AD remains unclear. Using aged APOE knock-in mice crossed with 5xFAD mice, we show that, compared to APOE3, APOE4 accelerates blood-brain barrier (BBB) breakdown, loss of cerebral blood flow, neuronal loss and behavioral deficits independently of amyloid-ß. BBB breakdown was associated with activation of the cyclophilin A-matrix metalloproteinase-9 BBB-degrading pathway in pericytes. Suppression of this pathway improved BBB integrity and prevented further neuronal loss and behavioral deficits in APOE4;5FAD mice while having no effect on amyloid-ß pathology. Thus, APOE4 accelerates advanced-stage BBB breakdown and neurodegeneration in Alzheimer's mice via the cyclophilin A pathway in pericytes independently of amyloid-ß, which has implication for the pathogenesis and treatment of vascular and neurodegenerative disorder in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Apolipoproteína E4/genética , Enfermedad de Alzheimer/genética , Ciclofilina A/genética , Péptidos beta-Amiloides/metabolismo
3.
PLoS One ; 12(12): e0188340, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261664

RESUMEN

Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.


Asunto(s)
Transporte Axonal/fisiología , Axones/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas Priónicas/fisiología , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Cinesinas/metabolismo , Ratones , Mitocondrias/metabolismo , Fosforilación
4.
Aging (Albany NY) ; 9(3): 964-985, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28333036

RESUMEN

This study was designed to explore the influence of apolipoprotein E (APOE) on blood phospholipids (PL) in predicting preclinical Alzheimer's disease (AD). Lipidomic analyses were also performed on blood from an AD mouse model expressing human APOE isoforms (EFAD) and five AD mutations and from 195 cognitively normal participants, 23 of who converted to mild cognitive impairment (MCI)/AD within 3 years. APOE ε4-carriers converting to MCI/AD had high arachidonic acid (AA)/docosahexaenoic acid (DHA) ratios in PL compared to cognitively normal ε4 and non-ε4 carriers. Arachidonic acid and DHA containing PL species, ε4-status and Aß42/Aß40 ratios provided 91% accuracy in detecting MCI/AD. Fish oil/omega-3 fatty acid consumption was associated with lower AA/DHA ratios even among ε4 carriers. High plasma AA/DHA ratios were observed in E4FAD compared to EFAD mice with other isoforms. In particular, alterations in plasma AA and DHA containing PL species were also observed in the brains of E4FAD mice compared to E3FAD mice. Despite the small sample size and a short follow-up, these results suggest that blood PL could potentially serve as biomarkers of preclinical MCI/AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Apolipoproteína E4/sangre , Ácido Araquidónico/sangre , Disfunción Cognitiva/diagnóstico , Ácidos Docosahexaenoicos/sangre , Anciano , Enfermedad de Alzheimer/sangre , Animales , Disfunción Cognitiva/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones
5.
Biochim Biophys Acta ; 1801(8): 819-23, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20470897

RESUMEN

Lipoprotein remodelling in the periphery has been extensively studied. For example, the processing of nascent apoAI particles to cholesterol-loaded HDL lipoproteins during reverse cholesterol transport involves a series of enzymes, transporters in peripheral tissue, as well as other apolipoproteins and lipoproteins. These extensive modifications and interconversions are well defined. Here, we present the hypothesis that a similar process occurs within the blood brain barrier (BBB) via glia-secreted lipid-poor apoE particles undergoing remodelling to become mature central nervous system (CNS) lipoproteins. We further pose several pressing issues and future directions for the study of lipoproteins in the brain.


Asunto(s)
Encéfalo/metabolismo , Lipoproteínas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Apolipoproteínas E/metabolismo , Apolipoproteínas E/fisiología , Encéfalo/fisiopatología , Humanos , Metabolismo de los Lípidos/fisiología , Lipoproteínas/fisiología , Modelos Biológicos , Neuroglía/metabolismo , Neuroglía/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA