Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Res Sq ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39257994

RESUMEN

Senescent cells secrete proinflammatory factors known as the senescence-associated secretory phenotype (SASP), contributing to tissue dysfunction and aging. Mitochondrial dysfunction is a key feature of senescence, influencing SASP via mitochondrial DNA (mtDNA) release and cGAS/STING pathway activation. Here, we demonstrate that mitochondrial RNA (mtRNA) also accumulates in the cytosol of senescent cells, activating RNA sensors RIG-I and MDA5, leading to MAVS aggregation and SASP induction. Inhibition of these RNA sensors significantly reduces SASP factors. Furthermore, BAX and BAK plays a key role in mtRNA leakage during senescence, and their deletion diminishes SASP expression in vitro and in a mouse model of Metabolic Dysfunction Associated Steatohepatitis (MASH). These findings highlight mtRNA's role in SASP regulation and its potential as a therapeutic target for mitigating age-related inflammation.

2.
Hepatology ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250501

RESUMEN

Cholangiopathies comprise a spectrum of chronic intra- and extrahepatic biliary tract disorders culminating in progressive cholestatic liver injury, fibrosis and often cirrhosis and its sequela. Treatment for these diseases is limited and collectively they are one of the therapeutic "black boxes" in clinical hepatology. The etiopathogenesis of the cholangiopathies likely includes disease-specific mediators, but also common cellular and molecular events driving disease progression (e.g., cholestatic fibrogenesis, inflammation, and duct damage). The common pathways involve cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, which are central to the pathogenesis of these disorders. Current information suggests that cholangiocytes function as a signaling "hub" in biliary tract-associated injury. Herein, we review the pivotal role of cholangiocytes in cholestatic fibrogenesis, focusing on crosstalk between cholangiocytes and portal fibroblasts and hepatic stellate cells. The proclivity of these cells to undergo a senescence-associated secretory phenotype which is pro-inflammatory and -fibrogenic, and the intrinsic intracellular activation pathways resulting in secretion of cytokines and chemokines is reviewed. The crosstalk between cholangiocytes and cells of the innate (neutrophils and macrophages), and adaptive (T-cells and B-cells) immune systems is also examined in detail. The information will help consolidate information on this topic, guide further research and potential therapeutic strategies for these diseases.

3.
EBioMedicine ; 107: 105283, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142076

RESUMEN

BACKGROUND: Gut L-type enteroendocrine cells (EECs) are intestinal chemosensory cells that secrete satiety hormones GLP-1 and PYY in response to activation of G-protein coupled receptors (GPCRs) by luminal components of nutrient digestion and microbial fermentation. Regulator of G-protein Signaling (RGS) proteins are negative regulators of GPCR signaling. The expression profile of RGS in EECs, and their potential role in satiety hormone secretion and obesity is unknown. METHODS: Transcriptomic profiling of RGS was completed in native colonic EECs was completed using single-cell RNA sequencing (scRNA-Seq) in lean and obesity, and human jejunal EECs with data obtained from a publicly available RNAseq dataset (GSE114853). RGS validation studies were completed using whole mucosal intestinal tissue obtained during endoscopy in 61 patients (n = 42 OB, n = 19 Lean); a subset of patients' postprandial plasma was assayed for GLP-1 and PYY. Ex vivo human intestinal cultures and in vitro NCI-H716 cells overexpressing RGS9 were exposed to GLP-1 secretagogues in conjunction with a nonselective RGS-inhibitor and assayed for GLP-1 secretion. FINDINGS: Transcriptomic profiling of colonic and jejunal enteroendocrine cells revealed a unique RGS expression profile in EECs, and further within GLP-1+ L-type EECs. In obesity the RGS expression profile was altered in colonic EECs. Human gut RGS9 expression correlated positively with BMI and negatively with postprandial GLP-1 and PYY. RGS inhibition in human intestinal cultures increased GLP-1 release from EECs ex vivo. NCI-H716 cells overexpressing RGS9 displayed defective nutrient-stimulated GLP-1 secretion. INTERPRETATION: This study introduces the expression profile of RGS in human EECs, alterations in obesity, and suggests a role for RGS proteins as modulators of GLP-1 and PYY secretion from intestinal EECs. FUNDING: AA is supported by the NIH(C-Sig P30DK84567, K23 DK114460), a Pilot Award from the Mayo Clinic Center for Biomedical Discovery, and a Translational Product Development Fund from The Mayo Clinic Center for Clinical and Translational Science Office of Translational Practice in partnership with the University of Minnesota Clinical and Translational Science Institute.


Asunto(s)
Células Enteroendocrinas , Péptido 1 Similar al Glucagón , Obesidad , Péptido YY , Proteínas RGS , Transducción de Señal , Humanos , Células Enteroendocrinas/metabolismo , Obesidad/metabolismo , Proteínas RGS/metabolismo , Proteínas RGS/genética , Péptido 1 Similar al Glucagón/metabolismo , Péptido YY/metabolismo , Masculino , Femenino , Perfilación de la Expresión Génica , Transcriptoma , Adulto , Persona de Mediana Edad , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
4.
Hepatology ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39186465

RESUMEN

BACKGROUND AND AIMS: The primary cilium, an organelle that protrudes from cell surfaces, is essential for sensing extracellular signals. With disturbed cellular communication and chronic liver pathologies, this organelle's dysfunctions have been linked to disorders, including polycystic liver disease and cholangiocarcinoma. The goal of this study was to elucidate the relationship between primary cilia and the crucial regulator of cellular proliferation, the epidermal growth factor receptor (EGFR) signaling pathway, which has been associated with various clinical conditions. APPROACH AND RESULTS: The study identified aberrant EGFR signaling pathways in cholangiocytes lacking functional primary cilia using liver-specific intraflagellar transport 88 knockout mice, a Pkhd1 mutant rat model, and human cell lines that did not have functional cilia. Cilia-deficient cholangiocytes showed persistent EGFR activation because of impaired receptor degradation, in contrast to their normal counterparts, where EGFR localization to the cilia promotes appropriate signaling. Using histone deacetylase 6 inhibitors to restore primary cilia accelerates EGFR degradation, thereby reducing maladaptive signaling. Importantly, experimental intervention with the histone deacetylase 6 inhibitor tubastatin A in an orthotopic rat model moved EGFR to cilia and reduced ERK phosphorylation. Concurrent administration of EGFR and histone deacetylase 6 inhibitors in cholangiocarcinoma and polycystic liver disease cells demonstrated synergistic antiproliferative effects, which were associated with the restoration of functioning primary cilia. CONCLUSIONS: This study's findings shed light on ciliary function and robust EGFR signaling with slower receptor turnover. We could use therapies that restore the function of primary cilia to treat EGFR-driven diseases in polycystic liver disease and cholangiocarcinoma.

5.
Hepatol Commun ; 8(8)2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023332

RESUMEN

BACKGROUND: The epigenome, the set of modifications to DNA and associated molecules that control gene expression, cellular identity, and function, plays a major role in mediating cellular responses to outside factors. Thus, evaluation of the epigenetic state can provide insights into cellular adaptions occurring over the course of disease. METHODS: We performed epigenome-wide association studies of primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) using the Illumina MethylationEPIC Bead Chip. RESULTS: We found evidence of increased epigenetic age acceleration and differences in predicted immune cell composition in patients with PSC and PBC. Epigenetic profiles demonstrated differences in predicted protein levels including increased levels of tumor necrosis factor receptor superfamily member 1B in patients with cirrhotic compared to noncirrhotic PSC and PBC. Epigenome-wide association studies of PSC discovered strongly associated 5'-C-phosphate-G-3' sites in genes including vacuole membrane protein 1 and SOCS3, and epigenome-wide association studies of PBC found strong 5'-C-phosphate-G-3' associations in genes including NOD-like receptor family CARD domain containing 5, human leukocyte antigen-E, and PSMB8. Analyses identified disease-associated canonical pathways and upstream regulators involved with immune signaling and activation of macrophages and T-cells. A comparison of PSC and PBC data found relatively little overlap at the 5'-C-phosphate-G-3' and gene levels with slightly more overlap at the level of pathways and upstream regulators. CONCLUSIONS: This study provides insights into methylation profiles of patients that support current concepts of disease mechanisms and provide novel data to inspire future research. Studies to corroborate our findings and expand into other -omics layers will be invaluable to further our understanding of these rare diseases with the goal to improve and individualize prognosis and treatment.


Asunto(s)
Colangitis Esclerosante , Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Cirrosis Hepática Biliar , Humanos , Colangitis Esclerosante/genética , Colangitis Esclerosante/inmunología , Cirrosis Hepática Biliar/genética , Cirrosis Hepática Biliar/inmunología , Femenino , Persona de Mediana Edad , Masculino , Adulto , Epigenoma , Epigenómica , Anciano
6.
Aging Biol ; 1(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124711

RESUMEN

Age is the greatest risk factor for the development of type 2 diabetes mellitus (T2DM). Age-related decline in organ function is attributed to the accumulation of stochastic damage, including damage to the nuclear genome. Islets of T2DM patients display increased levels of DNA damage. However, whether this is a cause or consequence of the disease has not been elucidated. Here, we asked if spontaneous, endogenous DNA damage in ß-cells can drive ß-cell dysfunction and diabetes, via deletion of Ercc1, a key DNA repair gene, in ß-cells. Mice harboring Ercc1-deficient ß-cells developed adult-onset diabetes as demonstrated by increased random and fasted blood glucose levels, impaired glucose tolerance, and reduced insulin secretion. The inability to repair endogenous DNA damage led to an increase in oxidative DNA damage and apoptosis in ß-cells and a significant loss of ß-cell mass. Using electron microscopy, we identified ß-cells in clear distress that showed an increased cell size, enlarged nuclear size, reduced number of mature insulin granules, and decreased number of mitochondria. Some ß-cells were more affected than others consistent with the stochastic nature of spontaneous DNA damage. Ercc1-deficiency in ß-cells also resulted in loss of ß-cell function as glucose-stimulated insulin secretion and mitochondrial function were impaired in islets isolated from mice harboring Ercc1-deficient ß-cells. These data reveal that unrepaired endogenous DNA damage is sufficient to drive ß-cell dysfunction and provide a mechanism by which age increases the risk of T2DM.

8.
JHEP Rep ; 5(6): 100729, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37179785

RESUMEN

Background & Aims: Primary sclerosing cholangitis (PSC) is a chronic, progressive cholestatic liver disease that can lead to end-stage liver disease and cholangiocarcinoma. High-dose ursodeoxycholic acid (hd-UDCA, 28-30 mg/kg/day) was evaluated in a previous multicentre, randomised placebo-controlled trial; however, the study was discontinued early because of increased liver-related serious adverse events (SAEs), despite improvement in serum liver biochemical tests. We investigated longitudinal changes in serum miRNA and cytokine profiles over time among patients treated with either hd-UDCA or placebo in this trial as potential biomarkers for PSC and response to hd-UDCA, as well as to understand the toxicity associated with hd-UDCA treatment. Methods: Thirty-eight patients with PSC were enrolled in a multicentred, randomised, double-blinded trial of hd-UDCA vs. placebo. Results: Significant alterations in serum miRNA profiles were found over time in both patients treated with hd-UDCA or placebo. Additionally, there were striking differences between miRNA profiles in patients treated with hd-UDCA compared with placebo. In patients treated with placebo, the changes in concentration of serum miRNAs miR-26a, miR-199b-5p, miR-373, and miR-663 suggest alterations of inflammatory and cell proliferative processes consistent with disease progression. However, patients treated with hd-UDCA exhibited a more pronounced differential expression of serum miRNAs, suggesting that hd-UDCA induces significant cellular miRNA changes and tissue injury. Pathway enrichment analysis for UDCA-associated miRNAs suggested unique dysregulation of cell cycle and inflammatory response pathways. Conclusions: Patients with PSC have distinct miRNAs in the serum and bile, although the implications of these unique patterns have not been studied longitudinally or in relation to adverse events related to hd-UDCA. Our study demonstrates marked changes in miRNA serum profiles with hd-UDCA treatment and suggests mechanisms for the increased liver toxicity with therapy. Impact and implications: Using serum samples from patients with PSC enrolled in a clinical trial comparing hd-UDCA with placebo, our study found distinct miRNA changes in patients with PSC who are treated with hd-UDCA over a period of time. Our study also noted distinct miRNA patterns in patients who developed SAEs during the study period.

9.
Gastroenterology ; 165(1): 228-243.e2, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059338

RESUMEN

BACKGROUND & AIMS: We reported that cholangiocyte senescence, regulated by the transcription factor ETS proto-oncogene 1 (ETS1), is a pathogenic feature of primary sclerosing cholangitis (PSC). Furthermore, histone 3 lysine 27 is acetylated at senescence-associated loci. The epigenetic readers, bromodomain and extra-terminal domain (BET) proteins, bind acetylated histones, recruit transcription factors, and drive gene expression. Thus, we tested the hypothesis that BET proteins interact with ETS1 to drive gene expression and cholangiocyte senescence. METHODS: We performed immunofluorescence for BET proteins (BRD2 and 4) in liver tissue from liver tissue from PSC patients and a mouse PSC model. Using normal human cholangiocytes (NHCs), NHCs experimentally induced to senescence (NHCsen), and PSC patient-derived cholangiocytes (PSCDCs), we assessed senescence, fibroinflammatory secretome, and apoptosis after BET inhibition or RNA interference depletion. We assessed BET interaction with ETS1 in NHCsen and tissues from PSC patient, and the effects of BET inhibitors on liver fibrosis, senescence, and inflammatory gene expression in mouse models. RESULTS: Tissue from patients with PSC and a mouse PSC model exhibited increased cholangiocyte BRD2 and 4 protein (∼5×) compared with controls without disease. NHCsen exhibited increased BRD2 and 4 (∼2×), whereas PSCDCs exhibited increased BRD2 protein (∼2×) relative to NHC. BET inhibition in NHCsen and PSCDCs reduced senescence markers and inhibited the fibroinflammatory secretome. ETS1 interacted with BRD2 in NHCsen, and BRD2 depletion diminished NHCsen p21 expression. BET inhibitors reduced senescence, fibroinflammatory gene expression, and fibrosis in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine-fed and Mdr2-/- mouse models. CONCLUSION: Our data suggest that BRD2 is an essential mediator of the senescent cholangiocyte phenotype and is a potential therapeutic target for patients with PSC.


Asunto(s)
Colangitis Esclerosante , Animales , Ratones , Humanos , Colangitis Esclerosante/patología , Hígado/patología , Regulación de la Expresión Génica , Histonas/metabolismo , Proto-Oncogenes , Epigénesis Genética
10.
Exposome ; 3(1): osac011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36687160

RESUMEN

Primary sclerosing cholangitis (PSC) is a complex bile duct disorder. Its etiology is incompletely understood, but environmental chemicals likely contribute to risk. Patients with PSC have an altered bile metabolome, which may be influenced by environmental chemicals. This novel study utilized state-of-the-art high-resolution mass spectrometry (HRMS) with bile samples to provide the first characterization of environmental chemicals and metabolomics (collectively, the exposome) in PSC patients located in the United States of America (USA) (n = 24) and Norway (n = 30). First, environmental chemical- and metabolome-wide association studies were conducted to assess geographic-based similarities and differences in the bile of PSC patients. Nine environmental chemicals (false discovery rate, FDR < 0.20) and 3143 metabolic features (FDR < 0.05) differed by site. Next, pathway analysis was performed to identify metabolomic pathways that were similarly and differentially enriched by the site. Fifteen pathways were differentially enriched (P < .05) in the categories of amino acid, glycan, carbohydrate, energy, and vitamin/cofactor metabolism. Finally, chemicals and pathways were integrated to derive exposure-effect correlation networks by site. These networks demonstrate the shared and differential chemical-metabolome associations by site and highlight important pathways that are likely relevant to PSC. The USA patients demonstrated higher environmental chemical bile content and increased associations between chemicals and metabolic pathways than those in Norway. Polychlorinated biphenyl (PCB)-118 and PCB-101 were identified as chemicals of interest for additional investigation in PSC given broad associations with metabolomic pathways in both the USA and Norway patients. Associated pathways include glycan degradation pathways, which play a key role in microbiome regulation and thus may be implicated in PSC pathophysiology.

11.
Eur Radiol Exp ; 6(1): 58, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36396865

RESUMEN

BACKGROUND: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease that can lead to cirrhosis and hepatic decompensation. However, predicting future outcomes in patients with PSC is challenging. Our aim was to extract magnetic resonance imaging (MRI) features that predict the development of hepatic decompensation by applying algebraic topology-based machine learning (ML). METHODS: We conducted a retrospective multicenter study among adults with large duct PSC who underwent MRI. A topological data analysis-inspired nonlinear framework was used to predict the risk of hepatic decompensation, which was motivated by algebraic topology theory-based ML. The topological representations (persistence images) were employed as input for classification to predict who developed early hepatic decompensation within one year after their baseline MRI. RESULTS: We reviewed 590 patients; 298 were excluded due to poor image quality or inadequate liver coverage, leaving 292 potentially eligible subjects, of which 169 subjects were included in the study. We trained our model using contrast-enhanced delayed phase T1-weighted images on a single center derivation cohort consisting of 54 patients (hepatic decompensation, n = 21; no hepatic decompensation, n = 33) and a multicenter independent validation cohort of 115 individuals (hepatic decompensation, n = 31; no hepatic decompensation, n = 84). When our model was applied in the independent validation cohort, it remained predictive of early hepatic decompensation (area under the receiver operating characteristic curve = 0.84). CONCLUSIONS: Algebraic topology-based ML is a methodological approach that can predict outcomes in patients with PSC and has the potential for application in other chronic liver diseases.


Asunto(s)
Colangitis Esclerosante , Hepatopatías , Adulto , Humanos , Colangitis Esclerosante/diagnóstico por imagen , Colangitis Esclerosante/patología , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Estudios Multicéntricos como Asunto
12.
Nat Rev Gastroenterol Hepatol ; 19(9): 585-604, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35562534

RESUMEN

Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.


Asunto(s)
Quistes , Enfermedades Renales Quísticas , Hepatopatías , Humanos , Hígado , Calidad de Vida
13.
Epigenomics ; 14(8): 481-497, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35473391

RESUMEN

Aims: In this methylome-wide association study of cholestatic liver diseases (primary sclerosing cholangitis and primary biliary cholangitis), the authors aimed to elucidate changes in methylome and pathway enrichment to identify candidate genes. Patients & methods: Reduced representation bisulfite sequencing was performed on liver tissue from 58 patients with primary sclerosing cholangitis (n = 13), primary biliary cholangitis (n = 20), alcoholic liver disease (n = 21) and live liver donors (n = 4). Pathway enrichment and network analysis were used to explore key genes/pathways. Results: Both cholestatic liver diseases were characterized by global hypomethylation, with pathway enrichment demonstrating distinct genes and pathways associated with the methylome. Conclusions: This novel study demonstrated that differential methylation in cholestatic liver disease was associated with unique pathways, suggesting it may drive disease pathogenesis.


While DNA is the permanent code that defines each living being, the epigenome comprises sequences attached to DNA that can change with the environment. This means that abnormal changes to the epigenome may lead to disease and that finding and treating these abnormalities may in turn help treat disease. In this study of liver tissue from individuals with two rare liver diseases, primary sclerosing cholangitis and primary biliary cholangitis, the authors found that the epigenome of these two conditions is distinct, suggesting that the epigenome is linked to the development of these conditions and may be the key to treating them.


Asunto(s)
Colangitis Esclerosante , Cirrosis Hepática Biliar , Colangitis Esclerosante/genética , Metilación de ADN , Epigenoma , Humanos , Hígado , Cirrosis Hepática Biliar/genética
14.
Hepatology ; 76(5): 1240-1242, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35429172
16.
Semin Immunopathol ; 44(4): 527-544, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35178659

RESUMEN

The cholangiopathies are a group of liver diseases that affect cholangiocytes, the epithelial cells that line the bile ducts. Biliary atresia (BA), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are three cholangiopathies with significant immune-mediated pathogenesis where chronic inflammation and fibrosis lead to obliteration of bile ducts and eventual liver cirrhosis. Cellular senescence is a state of cell cycle arrest in which cells become resistant to apoptosis and profusely secrete a bioactive secretome. Recent evidence indicates that cholangiocyte senescence contributes to the pathogenesis of BA, PBC, and PSC. This review explores the role of cholangiocyte senescence in BA, PBC, and PSC, ascertains how cholangiocyte senescence may promote a senescence-associated immunopathology in these cholangiopathies, and provides the rationale for therapeutically targeting senescence as a treatment option for BA, PBC, and PSC.


Asunto(s)
Colangitis Esclerosante , Conductos Biliares/metabolismo , Conductos Biliares/patología , Senescencia Celular , Colangitis Esclerosante/etiología , Colangitis Esclerosante/terapia , Células Epiteliales , Fibrosis , Humanos
17.
Curr Opin Gastroenterol ; 38(2): 121-127, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35098933

RESUMEN

PURPOSE OF REVIEW: Cellular senescence (i.e. permanent withdrawal from the cell cycle) is increasingly recognized as a pathologic feature in a variety of inflammatory liver diseases, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC) and additional cholangiopathies. Herein, we provide an update on the interplay between cholangiocytes, cellular senescence and the cholangiopathies. RECENT FINDINGS: The themes covered by this review include novel models for studying the role of senescent cholangiocytes and the cholangiopathies, identification and modulation of key pathways or molecules regulating cholangiocyte senescence, and discovery of druggable targets to advance therapeutic options for the cholangiopathies. Most recent studies focused on PSC; however, the concepts and findings may be applied to additional cholangiopathies. SUMMARY: Cholangiopathies present unique and divergent clinicopathological features, causes and genetic backgrounds, but share several common disease processes. Cholangiocyte senescence in the cholestatic cholangiopathies, primarily PSC and PBC, is regarded as a key pathogenetic process. Importantly, senescent cholangiocytes exhibit phenotypic features including the senescence-associated secretory phenotype (SASP) and resistance to apoptosis that provide new directions for basic research and new prognostic and therapeutic approaches for clinical practice.


Asunto(s)
Colangitis Esclerosante , Colestasis , Senescencia Celular , Colangitis Esclerosante/genética , Células Epiteliales/metabolismo , Humanos
18.
Annu Rev Pathol ; 17: 251-269, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34724412

RESUMEN

Polycystic liver disease (PLD) is a group of genetic disorders characterized by progressive development of cholangiocyte-derived fluid-filled hepatic cysts. PLD is the most common manifestation of autosomal dominant and autosomal recessive polycystic kidney diseases and rarely occurs as autosomal dominant PLD. The mechanisms of PLD are a sequence of the primary (mutations in PLD-causative genes), secondary (initiation of cyst formation), and tertiary (progression of hepatic cystogenesis) interconnected molecular and cellular events in cholangiocytes. Nonsurgical, surgical, and limited pharmacological treatment options are currently available for clinical management of PLD. Substantial evidence suggests that pharmacological targeting of the signaling pathways and intracellular processes involved in the progression of hepatic cystogenesis is beneficial for PLD. Many of these targets have been evaluated in preclinical and clinical trials. In this review, we discuss the genetic, molecular, and cellular mechanisms of PLD and clinical and preclinical treatment strategies.


Asunto(s)
Quistes , Hepatopatías , Quistes/genética , Quistes/metabolismo , Quistes/terapia , Humanos , Hepatopatías/genética , Hepatopatías/terapia , Transducción de Señal
19.
J Hepatol ; 76(4): 921-933, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34953958

RESUMEN

BACKGROUND & AIMS: Biliary disease is associated with a proliferative/fibrogenic ductular reaction (DR). p300 is an epigenetic regulator that acetylates lysine 27 on histone 3 (H3K27ac) and is activated during fibrosis. Long non-coding RNAs (lncRNAs) are aberrantly expressed in cholangiopathies, but little is known about how they recruit epigenetic complexes and regulate DR. We investigated epigenetic complexes, including transcription factors (TFs) and lncRNAs, contributing to p300-mediated transcription during fibrosis. METHODS: We evaluated p300 in vivo using tamoxifen-inducible, cholangiocyte-selective, p300 knockout (KO) coupled with bile duct ligation (BDL) and Mdr KO mice treated with SGC-CBP30. Primary cholangiocytes and liver tissue were analyzed for expression of Acta2-as1 lncRNA by qPCR and RNA in situ hybridization. In vitro, we performed RNA-sequencing in human cholangiocytes with a p300 inhibitor. Cholangiocytes were exposed to lipopolysaccharide (LPS) as an injury model. We confirmed formation of a p300/ELK1 complex by immunoprecipitation (IP). RNA IP was used to examine interactions between ACTA2-AS1 and p300. Chromatin IP assays were used to evaluate p300/ELK1 occupancy and p300-mediated H3K27ac. Organoids were generated from ACTA2-AS1-depleted cholangiocytes. RESULTS: BDL-induced DR and fibrosis were reduced in Krt19-CreERT/p300fl/fl mice. Similarly, Mdr KO mice were protected from DR and fibrosis after SGC-CBP30 treatment. In vitro, depletion of ACTA2-AS1 reduced expression of proliferative/fibrogenic markers, reduced LPS-induced cholangiocyte proliferation, and impaired organoid formation. ACTA2-AS1 regulated transcription by facilitating p300/ELK1 binding to the PDGFB promoter after LPS exposure. Correspondingly, LPS-induced H3K27ac was mediated by p300/ELK1 and was reduced in ACTA2-AS1-depleted cholangiocytes. CONCLUSION: Cholangiocyte-selective p300 KO or p300 inhibition attenuate DR/fibrosis in mice. ACTA2-AS1 influences recruitment of p300/ELK1 to specific promoters to drive H3K27ac and epigenetic activation of proliferative/fibrogenic genes. This suggests that cooperation between epigenetic co-activators and lncRNAs facilitates DR/fibrosis in biliary diseases. LAY SUMMARY: We identified a three-part complex containing an RNA molecule, a transcription factor, and an epigenetic enzyme. The complex is active in injured bile duct cells and contributes to activation of genes involved in proliferation and fibrosis.


Asunto(s)
ARN Largo no Codificante , Animales , Conductos Biliares/patología , Proliferación Celular , Fibrosis , Lipopolisacáridos , Hígado/patología , Ratones , Ratones Noqueados , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
20.
Hepatol Commun ; 6(5): 965-979, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34825528

RESUMEN

Progress in development of prognostic and therapeutic options for the rare cholestatic liver diseases, primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), is hampered by limited knowledge of their pathogeneses. In particular, the potential role of hepatotoxic and/or metabolism-altering environmental chemicals in the pathogenesis of these diseases remains relatively unstudied. Moreover, the extent to which metabolic pathways are altered due to ongoing cholestasis and subsequent liver damage or possibly influenced by hepatotoxic chemicals is poorly understood. In this study, we applied a comprehensive exposomics-metabolomics approach to uncover potential pathogenic contributors to PSC and PBC. We used untargeted high-resolution mass spectrometry to characterize a wide range of exogenous chemicals and endogenous metabolites in plasma and tested them for association with disease. Exposome-wide association studies (EWAS) identified environmental chemicals, including pesticides, additives and persistent pollutants, that were associated with PSC and/or PBC, suggesting potential roles for these compounds in disease pathogenesis. Metabolome-wide association studies (MWAS) found disease-associated alterations to amino acid, eicosanoid, lipid, co-factor, nucleotide, mitochondrial and microbial metabolic pathways, many of which were shared between PSC and PBC. Notably, this analysis implicates a potential role of the 5-lipoxygenase pathway in the pathogenesis of these diseases. Finally, EWAS × MWAS network analysis uncovered linkages between environmental agents and disrupted metabolic pathways that provide insight into potential mechanisms for PSC and PBC. Conclusion: This study establishes combined exposomics-metabolomics as a generalizable approach to identify potentially pathogenic environmental agents and enumerate metabolic alterations that may impact PSC and PBC, providing a foundation for diagnostic and therapeutic strategies.


Asunto(s)
Colangitis Esclerosante , Colestasis , Cirrosis Hepática Biliar , Humanos , Cirrosis Hepática Biliar/diagnóstico , Metaboloma , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA