Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Bioessays ; 45(12): e2300134, 2023 12.
Article En | MEDLINE | ID: mdl-37712935

Platelets have important hemostatic functions in repairing blood vessels upon tissue injury. Cytokines, growth factors, and metabolites stored in platelet α-granules and dense granules are released upon platelet activation and clotting. Emerging evidence indicates that such platelet-derived signaling factors are instrumental in guiding tissue regeneration. Here, we discuss the important roles of platelet-secreted signaling factors in skeletal muscle regeneration. Chemokines secreted by platelets in the early phase after injury are needed to recruit neutrophils to injured muscles, and impeding this early step of muscle regeneration exacerbates inflammation at later stages, compromises neo-angiogenesis and the growth of newly formed myofibers, and reduces post-injury muscle force production. Platelets also contribute to the recruitment of pro-regenerative stromal cells from the adipose tissue, and the platelet releasate may also regulate the metabolism and proliferation of muscle satellite cells, which sustain myogenesis. Therefore, harnessing the signaling functions of platelets and the platelet secretome may provide new avenues for promoting skeletal muscle regeneration in health and disease.


Blood Platelets , Muscle, Skeletal , Blood Platelets/metabolism , Muscle, Skeletal/physiology , Signal Transduction , Wound Healing , Cytokines/metabolism
2.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L487-L499, 2023 10 01.
Article En | MEDLINE | ID: mdl-37643008

Transforming growth factor-ß1 (TGFß1) is the key profibrotic cytokine in idiopathic pulmonary fibrosis (IPF), but the primary source of this cytokine in this disease is unknown. Platelets have abundant stores of TGFß1, although the role of these cells in IPF is ill-defined. In this study, we investigated whether platelets, and specifically platelet-derived TGFß1, mediate IPF disease progression. Patients with IPF and non-IPF patients were recruited to determine platelet reactivity, and separate cohorts of patients with IPF were followed for mortality. To study whether platelet-derived TGFß1 modulates pulmonary fibrosis (PF), mice with a targeted deletion of TGFß1 in megakaryocytes and platelets (TGFß1fl/fl.PF4-Cre) were used in the well-characterized bleomycin-induced pulmonary fibrosis (PF) animal model. In a discovery cohort, we found significantly higher mortality in patients with IPF who had elevated platelet counts within the normal range. However, our validation cohort did not confirm this observation, despite significantly increased platelets, neutrophils, active TGFß1, and CCL5, a chemokine produced by inflammatory cells, in the blood, lung, and bronchoalveolar lavage (BAL) of patients with IPF. In vivo, we showed that despite platelets being readily detected within the lungs of bleomycin-treated mice, neither the degree of pulmonary inflammation nor fibrosis was significantly different between TGFß1fl/fl.PF4-Cre and control mice. Our results demonstrate for the first time that platelet-derived TGFß1 does not significantly mediate inflammation or fibrosis in a PF animal model. Furthermore, our human studies revealed blood platelet counts do not consistently predict mortality in IPF but other platelet-derived mediators, such as C-C chemokine ligand 5 (CCL5), may promote neutrophil recruitment and human IPF.NEW & NOTEWORTHY Platelets are a rich source of profibrotic TGFß; however, the role of platelets in idiopathic pulmonary fibrosis (IPF) is unclear. We identified that patients with IPF have significantly more platelets, neutrophils, and active TGFß in their airways than control patients. Using an animal model of IPF, we demonstrated that platelet-derived TGFß does not significantly drive lung fibrosis or inflammation. Our findings offer a better understanding of platelets in both human and animal studies of IPF.


Idiopathic Pulmonary Fibrosis , Humans , Mice , Animals , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Transforming Growth Factor beta1/pharmacology , Fibrosis , Transforming Growth Factor beta , Bleomycin/adverse effects , Inflammation/pathology , Transforming Growth Factors/adverse effects
3.
Nat Commun ; 14(1): 2900, 2023 05 22.
Article En | MEDLINE | ID: mdl-37217480

Skeletal muscle regeneration involves coordinated interactions between different cell types. Injection of platelet-rich plasma is circumstantially considered an aid to muscle repair but whether platelets promote regeneration beyond their role in hemostasis remains unexplored. Here, we find that signaling via platelet-released chemokines is an early event necessary for muscle repair in mice. Platelet depletion reduces the levels of the platelet-secreted neutrophil chemoattractants CXCL5 and CXCL7/PPBP. Consequently, early-phase neutrophil infiltration to injured muscles is impaired whereas later inflammation is exacerbated. Consistent with this model, neutrophil infiltration to injured muscles is compromised in male mice with Cxcl7-knockout platelets. Moreover, neo-angiogenesis and the re-establishment of myofiber size and muscle strength occurs optimally in control mice post-injury but not in Cxcl7ko mice and in neutrophil-depleted mice. Altogether, these findings indicate that platelet-secreted CXCL7 promotes regeneration by recruiting neutrophils to injured muscles, and that this signaling axis could be utilized therapeutically to boost muscle regeneration.


Chemokines , Muscle, Skeletal , Mice , Male , Animals , Neutrophil Infiltration , Muscle, Skeletal/physiology , Inflammation , Neutrophils/physiology
4.
Cell Rep ; 42(1): 111934, 2023 01 31.
Article En | MEDLINE | ID: mdl-36640353

Cachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia progressively and differentially impacts distinct tissues is largely unknown. Here, we find that the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally most impacted by cachexia. We also identify general and organ-specific transcriptional changes that indicate functional derangement by cachexia even in tissues that do not undergo wasting, such as the brain. Secreted factors constitute a top category of cancer-regulated genes in host tissues, and these changes include upregulation of the angiotensin-converting enzyme (ACE). ACE inhibition with the drug lisinopril improves muscle force and partially impedes cachexia-induced transcriptional changes, although wasting is not prevented, suggesting that cancer-induced host-secreted factors can regulate tissue function during cachexia. Altogether, by defining prevalent and temporal and tissue-specific responses to cachexia, this resource highlights biomarkers and possible targets for general and tissue-tailored anti-cachexia therapies.


Melanoma , Neoplasms , Wasting Syndrome , Mice , Animals , Cachexia , Neoplasms/pathology , Muscle, Skeletal/pathology , Wasting Syndrome/complications , Melanoma/pathology , Muscular Atrophy/pathology
5.
Sci Adv ; 9(1): eabq3951, 2023 01 06.
Article En | MEDLINE | ID: mdl-36608120

Metastases arise from rare cancer cells that successfully adapt to the diverse microenvironments encountered during dissemination through the bloodstream and colonization of distant tissues. How cancer cells acquire the ability to appropriately respond to microenvironmental stimuli remains largely unexplored. Here, we report an epigenetic pliancy mechanism that allows cancer cells to successfully metastasize. We find that a decline in the activity of the transcriptional repressor ZBTB18 defines metastasis-competent cancer cells in mouse models. Restoration of ZBTB18 activity reduces chromatin accessibility at the promoters of genes that drive metastasis, such as Tgfbr2, and this prevents TGFß1 pathway activation and consequently reduces cell migration and invasion. Besides repressing the expression of metastatic genes, ZBTB18 also induces widespread chromatin closing, a global epigenetic adaptation previously linked to reduced phenotypic flexibility. Thus, ZBTB18 is a potent chromatin regulator, and the loss of its activity enhances chromatin accessibility and transcriptional adaptations that promote the phenotypic changes required for metastasis.


Chromatin , Repressor Proteins , Animals , Mice , Chromatin/genetics , Epigenesis, Genetic , Repressor Proteins/genetics
6.
Nat Commun ; 13(1): 2370, 2022 05 02.
Article En | MEDLINE | ID: mdl-35501350

Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.


Cachexia , Neoplasms , Animals , Atrophy/metabolism , Cachexia/metabolism , Humans , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Neoplasms/complications , Neoplasms/genetics , Neoplasms/metabolism , Receptors, Cell Surface/metabolism
7.
Cell Rep ; 37(6): 109971, 2021 11 09.
Article En | MEDLINE | ID: mdl-34758314

Skeletal muscle atrophy is a debilitating condition that occurs with aging and disease, but the underlying mechanisms are incompletely understood. Previous work determined that common transcriptional changes occur in muscle during atrophy induced by different stimuli. However, whether this holds true at the proteome level remains largely unexplored. Here, we find that, contrary to this earlier model, distinct atrophic stimuli (corticosteroids, cancer cachexia, and aging) induce largely different mRNA and protein changes during muscle atrophy in mice. Moreover, there is widespread transcriptome-proteome disconnect. Consequently, atrophy markers (atrogenes) identified in earlier microarray-based studies do not emerge from proteomics as generally induced by atrophy. Rather, we identify proteins that are distinctly modulated by different types of atrophy (herein defined as "atroproteins") such as the myokine CCN1/Cyr61, which regulates myofiber type switching during sarcopenia. Altogether, these integrated analyses indicate that different catabolic stimuli induce muscle atrophy via largely distinct mechanisms.


Gene Expression Regulation , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Proteome , Sarcopenia/pathology , Transcriptome , Aging , Animals , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Sarcopenia/genetics , Sarcopenia/metabolism
8.
Biomaterials ; 276: 120975, 2021 09.
Article En | MEDLINE | ID: mdl-34333365

BACKGROUND: Understanding the molecular mechanisms of metastatic dissemination, the leading cause of death in cancer patients, is required to develop novel, effective therapies. Extravasation, an essential rate-limiting process in the metastatic cascade, includes three tightly coordinated steps: cancer cell adhesion to the endothelium, trans-endothelial migration, and early invasion into the secondary site. Focal adhesion proteins, including Tln1 and FAK, regulate the cytoskeleton dynamics: dysregulation of these proteins is often associated with metastatic progression and poor prognosis. METHODS: Here, we studied the previously unexplored role of these targets in each extravasation step using engineered 3D in vitro models, which recapitulate the physiological vascular niche experienced by cancer cells during hematogenous metastasis. RESULTS: Human breast cancer and fibrosarcoma cell lines respond to Cdk5/Tln1/FAK axis perturbation, impairing their metastatic potential. Vascular breaching requires actin polymerization-dependent invadopodia formation. Invadopodia generation requires the structural function of FAK and Tln1 rather than their activation through phosphorylation. Our data support that the inhibition of FAKS732 phosphorylation delocalizes ERK from the nucleus, decreasing ERK phosphorylated form. These findings indicate the critical role of these proteins in driving trans-endothelial migration. In fact, both knock-down experiments and chemical inhibition of FAK dramatically reduces lung colonization in vivo and TEM in microfluidic setting. Altogether, these data indicate that engineered 3D in vitro models coupled to in vivo models, genetic, biochemical, and imaging tools represent a powerful weapon to increase our understanding of metastatic progression. CONCLUSIONS: These findings point to the need for further analyses of previously overlooked phosphorylation sites of FAK, such as the serine 732, and foster the development of new effective antimetastatic treatments targeting late events of the metastatic cascade.


Microfluidics , Neoplasms , Cell Movement , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/metabolism , Humans , Neoplasms/metabolism , Phosphorylation , Talin/metabolism
9.
Cancer Res ; 81(22): 5666-5677, 2021 11 15.
Article En | MEDLINE | ID: mdl-34385183

Collagen remodeling contributes to many physiologic and pathologic processes. In primary tumors, the linearization of collagen fibers promotes cancer cell invasion and metastasis and is indicative of poor prognosis. However, it remains unknown whether there are endogenous inhibitors of collagen linearization that could be exploited therapeutically. Here, we show that collagen linearization is controlled by two secreted matricellular proteins with antagonistic functions. Specifically, WISP1 was secreted by cancer cells, bound to type I collagen (Col I), and linearized Col I via its cysteine-rich C-terminal (CT) domain. In contrast, WISP2, which lacks a CT domain, inhibited Col I linearization by preventing WISP1-Col I binding. Analysis of patient data revealed that WISP2 expression is lower in most solid tumors, in comparison with normal tissues. Consequently, genetic or pharmacologic restoration of higher WISP2 levels impaired collagen linearization and prevented tumor cell invasion and metastasis in vivo in models of human and murine breast cancer. Thus, this study uncovers WISP2 as the first inhibitor of collagen linearization ever identified and reveals that collagen architecture can be normalized and metastasis inhibited by therapeutically restoring a high WISP2:WISP1 ratio. SIGNIFICANCE: Two secreted factors, WISP1 and WISP2, antagonistically regulate collagen linearization, and therapeutically increasing the WISP2:WISP1 ratio in tumors limits collagen linearization and inhibits metastasis.See related commentary by Barcus and Longmore, p. 5611.


Biomarkers, Tumor/metabolism , Breast Neoplasms/prevention & control , CCN Intercellular Signaling Proteins/antagonists & inhibitors , CCN Intercellular Signaling Proteins/metabolism , Collagen Type I/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , Lung Neoplasms/prevention & control , Proto-Oncogene Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CCN Intercellular Signaling Proteins/genetics , Cell Movement , Cell Proliferation , Collagen Type I/metabolism , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neoplasm Invasiveness , Prognosis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
J Tissue Eng Regen Med ; 14(4): 645-649, 2020 04.
Article En | MEDLINE | ID: mdl-32068954

Platelets are a recognised potent source of transforming growth factor-ß1 (TGFß1), a cytokine known to promote wound healing and regeneration by stimulating dermal fibroblast proliferation and extracellular matrix deposition. Platelet lysate has been advocated as a novel personalised therapeutic to treat persistent wounds, although the precise platelet-derived growth factors responsible for these beneficial effects have not been fully elucidated. The aim of this study was to investigate the specific role of platelet-derived TGFß1 in cutaneous wound healing. Using a transgenic mouse with a targeted deletion of TGFß1 in megakaryocytes and platelets (TGFß1fl/fl .PF4-Cre), we show for the first time that platelet-derived TGFß1 contributes to epidermal and dermal thickening and cellular turnover after excisional skin wounding. In vitro studies demonstrate that human dermal fibroblasts stimulated with platelet lysate containing high levels of platelet-derived TGFß1 did not exhibit enhanced collagen deposition or proliferation, suggesting that platelet-derived TGFß1 is not a key promoter of these wound healing processes. Interestingly, human keratinocytes displayed enhanced TGFß1-driven proliferation in response to platelet lysate, reminiscent of our in vivo findings. In summary, our novel findings define and emphasise an important role of platelet-derived TGFß1 in epidermal remodelling and regeneration processes during cutaneous wound healing.


Blood Platelets/metabolism , Cell Proliferation , Keratinocytes/metabolism , Skin , Transforming Growth Factor beta1/metabolism , Wound Healing , Animals , Mice , Mice, Knockout , Skin/injuries , Skin/metabolism , Transforming Growth Factor beta1/genetics
11.
Cell Rep ; 28(5): 1268-1281.e6, 2019 07 30.
Article En | MEDLINE | ID: mdl-31365869

Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.


Calmodulin-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Muscle Proteins/metabolism , Myofibrils/enzymology , Ubiquitin-Protein Ligases/metabolism , Animals , Calmodulin-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Hypertrophy , Mice , Muscle Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
12.
EMBO J ; 38(16): e101302, 2019 08 15.
Article En | MEDLINE | ID: mdl-31294477

Collagen linearization is a hallmark of aggressive tumors and a key pathogenic event that promotes cancer cell invasion and metastasis. Cell-generated mechanical tension has been proposed to contribute to collagen linearization in tumors, but it is unknown whether other mechanisms play prominent roles in this process. Here, we show that the secretome of cancer cells is by itself able to induce collagen linearization independently of cell-generated mechanical forces. Among the tumor cell-secreted factors, we find a key role in this process for the matricellular protein WISP1 (CCN4). Specifically, WISP1 directly binds to type I collagen to promote its linearization in vitro (in the absence of cells) and in vivo in tumors. Consequently, WISP1-induced type I collagen linearization facilitates tumor cell invasion and promotes spontaneous breast cancer metastasis, without significantly affecting gene expression. Furthermore, higher WISP1 expression in tumors from cancer patients correlates with faster progression to metastatic disease and poor prognosis. Altogether, these findings reveal a conceptually novel mechanism whereby pro-metastatic collagen linearization critically depends on a cancer cell-secreted factor.


Breast Neoplasms/pathology , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Collagen Type I/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Prognosis , Transforming Growth Factor beta1/metabolism , Up-Regulation
13.
Proc Natl Acad Sci U S A ; 111(30): E3053-61, 2014 Jul 29.
Article En | MEDLINE | ID: mdl-25024172

During metastasis, host cells are recruited to disseminated tumor cells to form specialized microenvironments ("niches") that promote metastatic progression, but the mechanisms guiding the assembly of these niches are largely unknown. Tumor cells may autonomously recruit host cells or, alternatively, host cell-to-host cell interactions may guide the formation of these prometastatic microenvironments. Here, we show that platelet-derived rather than tumor cell-derived signals are required for the rapid recruitment of granulocytes to tumor cells to form "early metastatic niches." Granulocyte recruitment relies on the secretion of CXCL5 and CXCL7 chemokines by platelets upon contact with tumor cells. Blockade of the CXCL5/7 receptor CXCR2, or transient depletion of either platelets or granulocytes prevents the formation of early metastatic niches and significantly reduces metastatic seeding and progression. Thus, platelets recruit granulocytes and guide the formation of early metastatic niches, which are crucial for metastasis.


Blood Platelets/metabolism , Granulocytes/metabolism , Neoplasms, Experimental/metabolism , Tumor Microenvironment , Animals , Blood Platelets/pathology , CHO Cells , Cell Line, Tumor , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Chemokines, CXC/genetics , Chemokines, CXC/metabolism , Cricetinae , Cricetulus , Granulocytes/pathology , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism
14.
Cancer Cell ; 24(1): 45-58, 2013 Jul 08.
Article En | MEDLINE | ID: mdl-23770013

We used an in vivo small hairpin RNA (shRNA) screening approach to identify genes that are essential for MLL-AF9 acute myeloid leukemia (AML). We found that Integrin Beta 3 (Itgb3) is essential for murine leukemia cells in vivo and for human leukemia cells in xenotransplantation studies. In leukemia cells, Itgb3 knockdown impaired homing, downregulated LSC transcriptional programs, and induced differentiation via the intracellular kinase Syk. In contrast, loss of Itgb3 in normal hematopoietic stem and progenitor cells did not affect engraftment, reconstitution, or differentiation. Finally, using an Itgb3 knockout mouse model, we confirmed that Itgb3 is dispensable for normal hematopoiesis but is required for leukemogenesis. Our results establish the significance of the Itgb3 signaling pathway as a potential therapeutic target in AML.


Integrin beta3/physiology , Leukemia, Myeloid, Acute/etiology , RNA Interference , Signal Transduction/physiology , Animals , Base Sequence , Hematopoietic Stem Cells/physiology , Humans , Integrin beta3/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , RNA, Small Interfering/genetics , beta Catenin/physiology
15.
Int J Cancer ; 133(12): 2925-33, 2013 Dec 15.
Article En | MEDLINE | ID: mdl-23775727

Many targets have been identified in solid tumors for antibody therapy but it is less clear what surface antigens may be most commonly expressed on disseminated tumor cells. Using malignant pleural effusions as a source of disseminated tumor cells, we compared a panel of 35 antigens for their cancer specificity, antigen abundance and functional significance. These antigens have been previously implicated in cancer metastasis and fall into four categories: (i) cancer stem cell, (ii) epithelial-mesenchymal transition, (iii) metastatic signature of in vivo selection and (iv) tyrosine kinase receptors. We determined the antigen density of all 35 antigens on the cell surface by flow cytometry, which ranges from 3 × 10(3) -7 × 10(6) copies per cell. Comparison between the malignant and benign pleural effusions enabled us to determine the antigens specific for cancer. We further chose six antigens and examined the correlation between their expression levels and tumor formation in immunocompromised mice. We concluded that CD24 is one of the few antigens that could simultaneously meet all three criteria of an ideal target. It was specifically and abundantly expressed in malignant pleural effusions; CD24(high) tumor cells formed tumors in mice at a faster rate than CD24(low) tumor cells, and shRNA-mediated knockdown of CD24 in HT29 cells confirmed a functional requirement for CD24 in the colonization of the lung. Concomitant consideration of antigen abundance, specificity and functional importance can help identify potentially useful markers for disseminated tumor cells.


Antigens, Surface/analysis , Biomarkers, Tumor/analysis , CD24 Antigen/analysis , Pleural Effusion, Malignant/immunology , Animals , Antigens, Neoplasm/analysis , CD24 Antigen/physiology , Cell Adhesion Molecules/analysis , Epithelial Cell Adhesion Molecule , HT29 Cells , Heterografts , Humans , Lung Neoplasms/secondary , Mice , Neoplasm Transplantation , Pleural Effusion, Malignant/pathology
16.
Breast Cancer Res ; 14(6): R154, 2012 Dec 06.
Article En | MEDLINE | ID: mdl-23216791

INTRODUCTION: Deregulation of cadherin expression, in particular the loss of epithelial (E)-cadherin and gain of neural (N)-cadherin, has been implicated in carcinoma progression. We previously showed that endothelial cell-specific vascular endothelial (VE)-cadherin can be expressed aberrantly on tumor cells both in human breast cancer and in experimental mouse mammary carcinoma. Functional analyses revealed that VE-cadherin promotes tumor cell proliferation and invasion by stimulating transforming growth factor (TGF)-ß signaling. Here, we investigate the functional interplay between N-cadherin and VE-cadherin in breast cancer. METHODS: The expression of N-cadherin and VE-cadherin was evaluated by immunohistochemistry in a tissue microarray with 84 invasive human breast carcinomas. VE-cadherin and N-cadherin expression in mouse mammary carcinoma cells was manipulated by RNA interference or overexpression, and cells were then analyzed by immunofluorescence, reverse transcriptase-polymerase chain reaction, and western blot. Experimental tumors were generated by transplantation of the modified mouse mammary carcinoma cells into immunocompetent mice. Tumor growth was monitored, and tumor tissue was subjected to histological analysis. RESULTS: VE-cadherin and N-cadherin were largely co-expressed in invasive human breast cancers. Silencing of N-cadherin in mouse mammary carcinoma cells led to decreased VE-cadherin expression and induced changes indicative of mesenchymal-epithelial transition, as indicated by re-induction of E-cadherin, localization of ß-catenin at the cell membrane, decreased expression of vimentin and SIP1, and gain of epithelial morphology. Suppression of N-cadherin expression also inhibited tumor growth in vivo, even when VE-cadherin expression was forced. CONCLUSIONS: Our results highlight the critical role of N-cadherin in breast cancer progression and show that N-cadherin is involved in maintaining the malignant tumor cell phenotype. The presence of N-cadherin prevents the re-expression of E-cadherin and localization of ß-catenin at the plasma membrane of mesenchymal mammary carcinoma cells. N-cadherin is also required to maintain the expression of VE-cadherin in malignant tumor cells but not vice versa. Thus, N-cadherin acts in concert with VE-cadherin to promote tumor growth.


Antigens, CD/biosynthesis , Breast Neoplasms/pathology , Cadherins/biosynthesis , Endothelium, Vascular/metabolism , beta Catenin/metabolism , Animals , Antigens, CD/genetics , Breast/pathology , Cadherins/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Female , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Nerve Tissue Proteins/biosynthesis , RNA Interference , RNA, Small Interfering , RNA-Binding Proteins/biosynthesis , Vimentin/biosynthesis
17.
Cancer Discov ; 2(12): 1091-9, 2012 Dec.
Article En | MEDLINE | ID: mdl-23166151

UNLABELLED: Tumor cells transit from the primary tumor via the blood circulation to form metastases in distant organs. During this process, tumor cells encounter a number of environmental challenges and stimuli that profoundly impact their metastatic potential. Here, we review the cooperative and dynamic host-tumor cell interactions that support and promote the hematogenous dissemination of cancer cells to sites of distant metastasis. In particular, we discuss what is known about the cross-talk occurring among tumor cells, platelets, leukocytes, and endothelial cells and how these cell-cell interactions are organized both temporally and spatially at sites of extravasation and in the early metastatic niche. SIGNIFICANCE: Metastasis is a function not only of tumor cells but also involves cooperative interactions of those cells with normal cells of the body, in particular platelets and leukocytes. These other cell types alter the behavior of the tumor cells themselves and of endothelial cells lining the vasculature and assist in tumor cell arrest and extravasation at sites of metastasis and subsequently in the establishment of tumor cells in the early metastatic niche. A better understanding of the important role that these contact and paracrine interactions play during metastasis will offer new opportunities for therapeutic intervention.


Cell Adhesion/physiology , Cell Communication/physiology , Neoplasms/blood , Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Animals , Humans , Neoplasm Invasiveness , Neoplasm Metastasis
18.
Cancer Cell ; 20(5): 576-90, 2011 Nov 15.
Article En | MEDLINE | ID: mdl-22094253

Interactions of cancer cells with the primary tumor microenvironment are important determinants of cancer progression toward metastasis but it is unknown whether additional prometastatic signals are provided during the intravascular transit to the site of metastasis. Here, we show that platelet-tumor cell interactions are sufficient to prime tumor cells for subsequent metastasis. Platelet-derived TGFß and direct platelet-tumor cell contacts synergistically activate the TGFß/Smad and NF-κB pathways in cancer cells, resulting in their transition to an invasive mesenchymal-like phenotype and enhanced metastasis in vivo. Inhibition of NF-κB signaling in cancer cells or ablation of TGFß1 expression solely in platelets protects against lung metastasis in vivo. Thus, cancer cells rely on platelet-derived signals outside of the primary tumor for efficient metastasis.


Blood Platelets/metabolism , Epithelial-Mesenchymal Transition , Neoplastic Cells, Circulating/metabolism , Signal Transduction , Animals , Blood Platelets/cytology , Blood Platelets/physiology , Cell Line, Tumor , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Mice, Inbred C57BL , Molecular Sequence Data , NF-kappa B/metabolism , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Transforming Growth Factor beta1/metabolism
19.
Cancer Res ; 68(5): 1388-97, 2008 Mar 01.
Article En | MEDLINE | ID: mdl-18316602

Epithelial-to-mesenchymal transition (EMT) is an important event during carcinoma progression and leads to increased tumor cell malignancy. Here, we show that vascular endothelial (VE)-cadherin is induced during EMT in mammary tumor cells and is aberrantly expressed in invasive human breast carcinomas. VE-cadherin enhanced the capacity of fibroblastoid tumor cells to proliferate, form cord-like invasive structures, and adhere to endothelial cells, characteristics that are key contributors to their increased malignancy and metastatic potential. Consistently, VE-cadherin expression in malignant fibroblastoid tumor cells promoted the growth of experimental mammary carcinomas in vivo. Analysis of the signaling mechanisms involved revealed that VE-cadherin expression influences the levels of Smad2 phosphorylation and expression of target genes of transforming growth factor-beta (TGF-beta), a major mediator of advanced tumor progression and malignant tumor cell proliferation. VE-cadherin might thus promote tumor progression not only by contributing to tumor angiogenesis but also by enhancing tumor cell proliferation via the TGF-beta signaling pathway. This article provides evidence for a novel function of VE-cadherin in tumor progression and reveals a previously unknown molecular link between VE-cadherin expression and TGF-beta signaling. Our findings may have important implications for the clinical application of anti-VE-cadherin strategies.


Antigens, CD/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Disease Progression , Gene Expression Profiling , Humans , Mammary Neoplasms, Animal/pathology , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , Neoplasm Transplantation , Neovascularization, Pathologic , Signal Transduction
...