Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682603

RESUMEN

Mesothelial cells form the mesothelium, a simple epithelium lining the walls of serous cavities and the surface of visceral organs. Although mesothelial cells are phenotypically well characterized, their immunoregulatory properties remain largely unknown, with only two studies reporting their capacity to inhibit T cells through TGF-ß and their consumption of L-arginine by arginase-1. Whether human mesothelial cells can suppress other immune cells and possess additional leukosuppressive mechanisms, remain to be addressed to better delineate their therapeutic potential for cell therapy. Herein, we generated secretomes from omental mesothelial cells (OMC) and assess their capacity to inhibit lymphocytes proliferation, suppress activated T and B cells, as well as to modify macrophage activation markers. The secretome from mesenchymal stromal cells (MSC) served as a control of immuno-suppression. Although OMC and MSC were phenotypically divergent, their cytokine secretion patterns as well as expression of inflammatory and immunomodulary genes were similar. As such, OMC- and MSC-derived secretomes (OMC-S and MSC-S) both polarized RAW 264.7 macrophages towards a M2-like anti-inflammatory phenotype and suppressed mouse and human lymphocytes proliferation. OMC-S displayed a strong ability to suppress mouse- and human-activated CD19+/CD25+ B cells as compared to MSC-S. The lymphosuppressive activity of the OMC-S could be significantly counteracted either by SB-431542, an inhibitor of TGFß and activin signaling pathways, or with a monoclonal antibody against the TGFß1, ß2, and ß3 isoforms. A strong blockade of the OMC-S-mediated lymphosuppressive activity was achieved using L-NMMA, a specific inhibitor of nitric oxide synthase (NOS). Taken together, our results suggest that OMC are potent immunomodulators.


Asunto(s)
Inmunomodulación , Células Madre Mesenquimatosas , Animales , Humanos , Activación de Linfocitos , Activación de Macrófagos , Células Madre Mesenquimatosas/metabolismo , Ratones , Linfocitos T
2.
Theranostics ; 11(14): 6983-7004, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093866

RESUMEN

Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.


Asunto(s)
Astrocitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gliosis/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Adulto , Animales , Supervivencia Celular/efectos de los fármacos , Proteínas Co-Represoras/antagonistas & inhibidores , Dieta Alta en Grasa , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/metabolismo , Proteínas del Grupo de Alta Movilidad/antagonistas & inhibidores , Proteínas del Grupo de Alta Movilidad/genética , Histona Demetilasas/antagonistas & inhibidores , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , ARN Interferente Pequeño , RNA-Seq
3.
Nat Commun ; 9(1): 1488, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29662071

RESUMEN

Type 1 diabetes mellitus (T1DM) is due to the selective destruction of islet beta cells by immune cells. Current therapies focused on repressing the immune attack or stimulating beta cell regeneration still have limited clinical efficacy. Therefore, it is timely to identify innovative targets to dampen the immune process, while promoting beta cell survival and function. Liver receptor homologue-1 (LRH-1) is a nuclear receptor that represses inflammation in digestive organs, and protects pancreatic islets against apoptosis. Here, we show that BL001, a small LRH-1 agonist, impedes hyperglycemia progression and the immune-dependent inflammation of pancreas in murine models of T1DM, and beta cell apoptosis in islets of type 2 diabetic patients, while increasing beta cell mass and insulin secretion. Thus, we suggest that LRH-1 agonism favors a dialogue between immune and islet cells, which could be druggable to protect against diabetes mellitus.


Asunto(s)
Comunicación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/terapia , Hipoglucemiantes/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Fenalenos/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/patología , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Insulina/metabolismo , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/patología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/patología , Trasplante de Islotes Pancreáticos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/inmunología , Estreptozocina , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Trasplante Heterólogo
4.
Artículo en Inglés | MEDLINE | ID: mdl-26347862

RESUMEN

Tissue-engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, pericardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.

5.
PLoS One ; 8(2): e55181, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405120

RESUMEN

In mammalian visceral organs, vascular smooth muscle cells (VSMCs) originate from an epithelial-to-mesenchymal transition (EMT) of embryonic mesothelial cells (MCs). The ability of adult MCs to recapitulate EMT and to acquire smooth muscle (SM) markers upon provasculogenic culture suggested they might retain embryonic vasculogenic differentiation potential. However, it remains unknown whether adult MCs-derived SM-like cells may acquire specific vascular SM lineage markers and the functionality of differentiated contractile VSMCs. Here, we describe how a gentle trypsinization of adult mouse uterine cords could selectively detach their outermost uterine mesothelial layer cells. As other MCs; uterine MCs (UtMCs) uniformly expressed the epithelial markers ß-catenin, ZO-1, E-cadherin, CD54, CD29, and CK18. When cultured in a modified SM differentiation media (SMDM) UtMCs initiated a loss of epithelial characteristics and gained markers expression of EMT (Twist, Snail, and Slug), stem and progenitor (Nanog, Sox2, C-kit, Gata-4, Isl-1, and nestin), SM (α-SMA, calponin, caldesmon, SM22α, desmin, SM-MHC, and smoothelin-B) and cardiac (BMP2, BMP4, ACTC1, sACTN, cTnI, cTnT, ANF, Cx43, and MLC2a). UtMCs repeatedly subcultured in SMDM acquired differentiated VSM-like characteristics and expressed smoothelin-B in the typical stress-fiber pattern expression of contractile VSMCs. Relevantly, UtMCs-derived VSM-like cells could generate "mechanical force" to compact collagen lattices and displayed in diverse degree voltage (K(+)) and receptor (endothelin-1, oxytocin, norepinephrine, carbachol and vasopressin)-induced [Ca(2+)](i) rises and contraction. Thus, we show for the first time that UtMCs could recapitulate in vitro differentiative events of early cardiovascular differentiation and transdifferentiate in cells exhibiting molecular and functional characteristics of VSMCs.


Asunto(s)
Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , Útero/fisiología , Animales , Biomarcadores/metabolismo , Cadherinas/metabolismo , Calcio/metabolismo , Diferenciación Celular/fisiología , Transición Epitelial-Mesenquimal , Femenino , Integrina beta1/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Contracción Muscular/fisiología , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas , Ratas Wistar , Receptores de Superficie Celular/metabolismo , Receptores de Endotelina/metabolismo , Tripsina/metabolismo , Útero/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA