Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 29(25): 255401, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29553942

RESUMEN

By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell's performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V bi) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively. Consequently, the solar cell's performance is degraded if either the doping concentration of the c-Si core, or/and the work function of the back contact is too low. By inserting a thin (p) a-Si:H layer between both core/absorber and back contact/absorber, the performance of the solar cell can be improved by partly fixing the V bi at both interfaces due to strong electrostatic screening effect. Depositing such a buffer layer playing the role of an electrostatic screen for charge carriers is a suggested way of enhancing the performance of solar cells based on radial p-i-n or n-i-p nanowire array.

2.
ACS Appl Mater Interfaces ; 8(45): 31375-31384, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27781426

RESUMEN

An in-depth study of metal assisted chemical etching (MACE) of p-type c-Si in HF/H2O2 aqueous solutions using Pt nanoparticles as catalysts is presented. Combination of cyclic voltammetry, open circuit measurements, chronoamperometry, impedance spectroscopy, and 2D band bending modeling of the metal/semiconductor/electrolyte interfaces at the nanoscale and under different etching conditions allows gaining physical insights into this system. Additionally, in an attempt to mimic the etching conditions, the modeling has been performed with a positively biased nanoparticle buried in the Si substrate. Following these findings, the application of an external polarization during etching is introduced as a novel efficient approach for achieving straightforward control of the pore morphology by acting upon the band bending at the Si/electrolyte junction. In this way, nanostructures ranging from straight mesopores to cone-shaped macropores are obtained as the Si sample is biased from negative to positive potentials. Remarkably, macroscopic cone-shaped pores in the 1-5 µm size range with a high aspect ratio (L/W ∼ 1.6) are obtained by this method. This morphology leads to a reduction of the surface reflectance below 5% over the entire VIS-NIR domain, which outperforms macrostructures made by state of the art texturization techniques for Si solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA