Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1185311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287456

RESUMEN

Pregnancy is a state of multiple physiological adaptations. Since methylation of DNA is an epigenetic mechanism that regulates gene expression and contributes to adaptive phenotypic variations, we investigated methylation changes in maternal blood of a longitudinal cohort of pregnant women from the first trimester of gestation to the third. Interestingly, during pregnancy, we found a gain of methylation in genes involved in morphogenesis, such as ezrin, while we identified a loss of methylation in genes promoting maternal-infant bonding (AVP and PPP1R1B). Together, our results provide insights into the biological mechanisms underlying physiological adaptations during pregnancy.

2.
Sci Rep ; 7: 46311, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387357

RESUMEN

Obesity is a heterogeneous disease with many different subtypes. Epigenetics could contribute to these differences. The aim of this study was to investigate genome-wide DNA methylation searching for methylation marks associated with obesity in children and adolescents. We studied DNA methylation profiles in whole blood cells from 40 obese children and controls using Illumina Infinium HumanMethylation450 BeadChips. After correction for cell heterogeneity and multiple tests, we found that compared to lean controls, 31 CpGs are differentially methylated in obese patients. A greatest proportion of these CpGs is hypermethylated in obesity and located in CpG shores regions. We next focused on severely obese children and identified 151 differentially methylated CpGs among which 10 with a difference in methylation greater than 10%. The top pathways enriched among the identified CpGs included the "IRS1 target genes" and several pathways in cancer diseases. This study represents the first effort to search for differences in methylation in obesity and severe obesity, which may help understanding these different forms of obesity and their complications.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Obesidad Mórbida/genética , Adolescente , Estudios de Casos y Controles , Niño , Islas de CpG , Femenino , Genoma Humano , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA