Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19038, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923742

RESUMEN

Confinement time of electron plasmas trapped using a purely toroidal magnetic field has been found to exceed [Formula: see text] in a small aspect ratio ([Formula: see text], [Formula: see text] and a are device major and minor radius, respectively), partial torus. It improves upon the previously reported confinement time by nearly two orders of magnitude. Lifetime is estimated from the frequency scaling of the linear diocotron mode launched from sections of the wall, that are also used for mode diagnostics. Confinement improves as neutral pressures are reduced to [Formula: see text] in the presence of a steady state magnetic field of 200 Gauss ([Formula: see text] with droop [Formula: see text]) at [Formula: see text] electron injection energies. With reduced pressures the role of (ion driven) instability diminishes and loss mechanisms resulting from elastic electron-neutral (e-n) and the ubiquitous electron-electron (e-e) scattering seem to play an important role which suggests low electron temperatures. The contribution to electron population resulting from the ionization of background neutral gas at these temperatures and pressures are expected to be insignificant and is corroborated in our experiments.

2.
Rev Sci Instrum ; 86(8): 083504, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26329189

RESUMEN

A suitable charge-collector has been designed and developed to estimate charge-content of electron plasmas in a Small Aspect Ratio Toroidal Experiment in a C-shaped trap (SMARTEX-C). The electrons are periodically injected and held in the trap with the aid of electrostatic end-fields and a toroidal magnetic field. After a preset "hold" time, the trapped charges are dumped onto a grounded collector (by gating it). As the charges flow along the magnetic field lines onto the collector, the integrated current gives the charge-content of the plasma at the instant of dump. In designing such a charge collector, several challenges peculiar to the geometry of the trap and the nature of the plasma had to be addressed. Instantaneous charge measurements synchronised with the E × B drift of the plasma, along with fast transit times of electrons to the collector (few 100 ns or less) (due to the low aspect ratio of the trap) essentially require fast gating of the collector. The resulting large capacitive transients alongside low charge content (few nC) of such plasmas further lead to increasing demands on response and sensitivity of the collector. Complete cancellation of such transients is shown to be possible, in principle, by including the return path in our measurement circuit but the "non-neutrality" of the plasma acts as a further impediment. Ultimately, appropriate shielding and measurement circuits allow us to (re)distribute the capacitance and delineate the paths of these currents, leading to effective cancellation of transients and marked improvement in sensitivity. Improved charge-collector has thus been used to successfully estimate the time evolution of total charge of the confined electron plasma in SMARTEX-C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA