Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Peptides ; 179: 171256, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825012

RESUMEN

The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid in vivo degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.

2.
J Endocrinol ; 262(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861364

RESUMEN

Recent approval of the dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist, tirzepatide, for the management of type 2 diabetes mellitus (T2DM) has reinvigorated interest in exploitation of GIP receptor (GIPR) pathways as a means of metabolic disease management. However, debate has long surrounded the use of the GIPR as a therapeutic target and whether agonism or antagonism is of most benefit in management of obesity/diabetes. This controversy appears to be partly resolved by the success of tirzepatide. However, emerging studies indicate that prolonged GIPR agonism may desensitise the GIPR to essentially induce receptor antagonism, with this phenomenon suggested to be more pronounced in the human than rodent setting. Thus, deliberation continues to rage in relation to benefits of GIPR agonism vs antagonism. That said, as with GIPR agonism, it is clear that the metabolic advantages of sustained GIPR antagonism in obesity and obesity-driven forms of diabetes can be enhanced by concurrent GLP-1 receptor (GLP-1R) activation. This narrative review discusses various approaches of pharmacological GIPR antagonism including small molecule, peptide, monoclonal antibody and peptide-antibody conjugates, indicating stage of development and significance to the field. Taken together, there is little doubt that interesting times lie ahead for GIPR agonism and antagonism, either alone or when combined with GLP-1R agonists, as a therapeutic intervention for the management of obesity and associated metabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Obesidad , Receptores de la Hormona Gastrointestinal , Humanos , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores , Receptores de la Hormona Gastrointestinal/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Animales , Polipéptido Inhibidor Gástrico/agonistas , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Receptor del Péptido 2 Similar al Glucagón
3.
Biofactors ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635341

RESUMEN

Pancreatic polypeptide (PP) is a postprandial hormone secreted from pancreatic islets that activates neuropeptide Y4 receptors (NPY4Rs). PP is known to induce satiety but effects at the level of the endocrine pancreas are less well characterized. In addition, rapid metabolism of PP by dipeptidyl peptidase-4 (DPP-4) limits the investigation of the effects of the native peptide. Therefore, in the present study, five novel amino acid substituted and/or fatty acid derivatized PP analogs were synthesized, namely [P3]PP, [K13Pal]PP, [P3,K13Pal]PP, [N-Pal]PP, and [N-Pal,P3]PP, and their impact on pancreatic beta-cell function, as well as appetite regulation and glucose homeostasis investigated. All PP analogs displayed increased resistance to DPP-4 degradation. In addition, all peptides inhibited alanine-induced insulin secretion from BRIN-BD11 beta cells. Native PP and related analogs (10-8 and 10-6 M), and especially [P3]PP and [K13Pal]PP, significantly protected against cytokine-induced beta-cell apoptosis and promoted cellular proliferation, with effects dependent on the NPY4R for all peptides barring [N-Pal,P3]PP. In mice, all peptides, except [N-Pal]PP and [N-Pal,P3]PP, evoked a dose-dependent (25, 75, and 200 nmol/kg) suppression of appetite, with native PP and [P3]PP further augmenting glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) induced reductions of food intake. The PP peptides had no obvious detrimental effect on glucose tolerance and they did not noticeably impair the glucose-regulatory actions of GLP-1 or CCK. In conclusion, Pro3 amino acid substitution of PP, either alone or together with mid-chain acylation, creates PP analogs with benefits on beta-cell rest, islet cell turnover, and energy regulation that may be applicable to the treatment of diabetes and obesity.

4.
Expert Opin Pharmacother ; 24(5): 587-597, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36927378

RESUMEN

INTRODUCTION: Obesity is recognized as a major healthcare challenge. Following years of slow progress in discovery of safe, effective therapies for weight management, recent approval of the glucagon-like peptide 1 receptor (GLP-1R) mimetics, liraglutide and semaglutide, for obesity has generated considerable excitement. It is anticipated these agents will pave the way for application of tirzepatide, a highly effective glucose-dependent insulinotropic polypeptide receptor (GIPR), GLP-1R co-agonist, recently approved for management of type 2 diabetes mellitus. AREAS COVERED: Following promising weight loss in obese individuals in Phase III clinical trials, liraglutide and semaglutide were approved for weight management without diabetes. Tirzepatide has attained Fast Track designation for obesity management by the US Food and Drug Association. This narrative review summarizes experimental, preclinical, and clinical data for these agents and related GLP-1R/GIPR co-agonists, prioritizing clinical research published within the last 10 years where possible. EXPERT OPINION: GLP-1R mimetics are often discontinued within 24 months meaning long-term application of these agents in obesity is questioned. Combined GIPR/GLP-1R agonism appears to induce fewer side effects, indicating GLP-1R/GIPR co-agonists may be more suitable for enduring obesity management. After years of debate, this GIPR-biased GLP-1R/GIPR co-agonist highlights the therapeutic promise of including GIPR modulation for diabetes and obesity therapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Humanos , Liraglutida/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Polipéptido Inhibidor Gástrico/farmacología , Polipéptido Inhibidor Gástrico/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico
5.
Biochem Pharmacol ; 208: 115398, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581052

RESUMEN

GPR55 has been recognized as a novel anti-diabetic target exerting positive effects on beta cell function and mass. This study evaluated the metabolic actions and therapeutic efficacy of GPR55 agonist abnormal cannabidiol (Abn-CBD) administered alone and in combination with sitagliptin in diet-induced obese-diabetic mice. Chronic effects of 21-day oral administration of Abn-CBD (0.1 µmol/kg BW) monotherapy and in combination with sitagliptin (50 mg/kg BW) were assessed in obese-diabetic HFF mice (n = 8). Assessments of plasma glucose, circulating insulin, DPP-IV activity, CRP, amylase, lipids, body weight and food intake were undertaken. Glucose tolerance, insulin sensitivity, DEXA scanning and islet morphology analysis were performed at 21-days. Sitagliptin, Abn-CBD alone and in combination with sitagliptin attenuated plasma glucose by 37-53 % (p < 0.01 - p < 0.001) and enhanced circulating insulin concentrations by 23-31 % (p < 0.001). Abn-CBD alone and with sitagliptin reduced bodyweight by 9-10 % (p < 0.05). After 21-days, Abn-CBD in combination with sitagliptin (44 %; p < 0.01) improved glucose tolerance, whilst enhancing insulin sensitivity by 79 % (p < 0.01). Abn-CBD increased islet area (86 %; p < 0.05), beta cell mass (p < 0.05) and beta cell proliferation (164 %; p < 0.001), whilst in combination with sitagliptin islet area was decreased (50 %; p < 0.01). Abn-CBD alone, in combination with sitagliptin or sitagliptin alone decreased triglycerides by 34-65 % (p < 0.001) and total cholesterol concentrations by 15-25 % (p < 0.001). In addition, Abn-CBD in combination with sitagliptin reduced fat mass by 19 % (p < 0.05) and reduced CRP concentrations (39 %; p < 0.05). These findings advocate Abn-CBD monotherapy and in combination with sitagliptin as a novel and effective approach for bodyweight control and the treatment of glucose intolerance and dyslipidaemia in type-2-diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Resistencia a la Insulina , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Fosfato de Sitagliptina/farmacología , Fosfato de Sitagliptina/uso terapéutico , Receptores de Cannabinoides/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Obesidad/tratamiento farmacológico
6.
J Pharm Pharmacol ; 74(12): 1758-1764, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36206181

RESUMEN

OBJECTIVES: The antimalarial drug artemether is suggested to effect pancreatic islet cell transdifferentiation, presumably through activation γ-aminobutyric acid receptors, but this biological action is contested. METHODS: We have investigated changes in α-cell lineage in response to 10-days treatment with artemether (100 mg/kg oral, once daily) on a background of ß-cell stress induced by multiple low-dose streptozotocin (STZ) injection in GluCreERT2; ROSA26-eYFP transgenic mice. KEY FINDINGS: Artemether intervention did not affect the actions of STZ on body weight, food and fluid intake or blood glucose. Circulating insulin and glucagon were reduced by STZ treatment, with a corresponding decline in pancreatic insulin content, which were not altered by artemether. The detrimental changes to pancreatic islet morphology induced by STZ were also evident in artemether-treated mice. Tracing of α-cell lineage, through co-staining for glucagon and yellow fluorescent protein (YFP), revealed a significant decrease of the proportion of glucagon+YFP- cells in STZ-diabetic mice, which was reversed by artemether. However, artemether had no effect on transdifferentiation of α-cells into ß-cells and failed to augment the number of bi-hormonal, insulin+glucagon+, islet cells. CONCLUSIONS: Our observations confirm that artemisinin derivatives do not impart meaningful benefits on islet cell lineage transition events or pancreatic islet morphology.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Insulina/metabolismo , Glucagón/metabolismo , Glucagón/farmacología , Transdiferenciación Celular , Diabetes Mellitus Experimental/metabolismo , Arteméter/farmacología , Arteméter/metabolismo , Arteméter/uso terapéutico , Glucemia , Estreptozocina/farmacología
7.
J Endocrinol ; 255(2): 91-101, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36005280

RESUMEN

Discerning modification to the amino acid sequence of native glucagon can generate specific glucagon receptor (GCGR) antagonists, that include desHis1Pro4Glu9-glucagon and the acylated form desHis1Pro4Glu9(Lys12PAL)-glucagon. In the current study, we have evaluated the metabolic benefits of once-daily injection of these peptide-based GCGR antagonists for 18 days in insulin-resistant high-fat-fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. Administration of desHis1Pro4Glu9-glucagon moderately (P < 0.05) decreased STZ-induced elevations of food intake. Body weight was not different between groups of HFF-STZ mice and both treatment interventions delayed (P < 0.05) the onset of hyperglycaemia. The treatments reduced (P < 0.05-P < 0.001) circulating and pancreatic glucagon, whilst desHis1Pro4Glu9(Lys12PAL)-glucagon also substantially increased (P < 0.001) pancreatic insulin stores. Oral glucose tolerance was appreciably improved (P < 0.05) by both antagonists, despite the lack of augmentation of glucose-stimulated insulin release. Interestingly, positive effects on i.p. glucose tolerance were less obvious suggesting important beneficial effects on gut function. Metabolic benefits were accompanied by decreased (P < 0.05-P < 0.01) locomotor activity and increases (P < 0.001) in energy expenditure and respiratory exchange ratio in both treatment groups. In addition, desHis1Pro4Glu9-glucagon increased (P < 0.01-P < 0.001) O2 consumption and CO2 production. Together, these data provide further evidence that peptidic GCGR antagonists are effective treatment options for obesity-driven forms of diabetes, even when accompanied by insulin deficiency.


Asunto(s)
Insulina , Receptores de Glucagón , Animales , Glucemia/metabolismo , Glucagón/metabolismo , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Ratones , Estreptozocina
8.
Diabetes Obes Metab ; 24(12): 2353-2363, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35848461

RESUMEN

AIM: To examine whether sequential administration of (d-Arg35 )-sea lamprey peptide tyrosine tyrosine (1-36) (SL-PYY) and the glucagon-like peptide-1 (GLP-1) mimetic, liraglutide, has beneficial effects in diabetes. METHODS: SL-PYY is an enzymatically stable neuropeptide Y1 receptor (NPY1R) agonist known to induce pancreatic beta-cell rest and improve overall beta-cell health. We employed SL-PYY and liraglutide to induce appropriate recurrent periods of beta-cell rest and stimulation, to assess therapeutic benefits in high fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF-STZ mice. RESULTS: Previous studies confirm that, at a dose of 0.25 nmol/kg, liraglutide exerts bioactivity over an 8-12 hour period in mice. Initial pharmacokinetic analysis revealed that 75 nmol/kg SL-PYY yielded a similar plasma drug time profile. When SL-PYY (75 nmol/kg) and liraglutide (0.25 nmol/kg) were administered sequentially at 08:00 AM and 08:00 PM, respectively, to HFF-STZ mice for 28 days, reductions in energy intake, body weight, circulating glucose, insulin and glucagon were noted. Similarly positive, but slightly less striking, effects were also apparent with twice-daily liraglutide-only therapy. The sequential SL-PYY and liraglutide treatment also improved insulin sensitivity and glucose-induced insulin secretory responses, which was not apparent with liraglutide treatment, although benefits on glucose tolerance were mild. Interestingly, combined therapy also elevated pancreatic insulin, decreased pancreatic glucagon and enhanced the plasma insulin/glucagon ratio compared with liraglutide alone. This was not associated with an enhancement of beneficial changes in islet cell areas, proliferation or apoptosis compared with liraglutide alone, but the numbers of centrally stained glucagon-positive islet cells were reduced by sequential combination therapy. CONCLUSION: These data show that NPY1R-induced intervals of beta-cell rest, combined with GLP-1R-stimulated periods of beta-cell stimulation, should be further evaluated as an effective treatment option for obesity-driven forms of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Neuropéptidos , Animales , Ratones , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico , Glucosa/uso terapéutico , Insulina/uso terapéutico , Liraglutida/farmacología , Liraglutida/uso terapéutico , Neuropéptidos/uso terapéutico , Péptido YY/metabolismo , Estreptozocina/uso terapéutico , Tirosina/uso terapéutico , Neuropéptido Y/farmacología
9.
Biochimie ; 199: 60-67, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35439540

RESUMEN

Ablation of glucagon receptor (GCGR) signalling is a potential treatment option for diabetes, whilst glucagon-like peptide-1 (GLP-1) receptor agonists are clinically approved for both obesity and diabetes. There is a suggestion that GCGR blockade enhances GLP-1 secretion and action, whilst GLP-1 receptor activation is known to inhibit glucagon release, implying potential for positive interactions between both therapeutic avenues. The present study has examined the ability of sustained GCGR antagonism, using desHis1Pro4Glu9-glucagon, to augment the established benefits of the GLP-1 mimetic, exendin-4, in high fat fed (HFF) mice. Twice-daily injection of desHis1Pro4Glu9-glucagon, exendin-4 or a combination of both peptides to groups of HFF mice for 10 days had no impact on body weight or energy intake. Circulating blood glucose and glucagon concentrations were significantly (P < 0.05-0.01) decreased by all treatment regimens, with plasma insulin levels elevated (P < 0.001) when compared to lean control mice. Intraperitoneal and oral glucose tolerance were improved (P < 0.05-0.01) by all treatments, despite lack of enhanced glucose-stimulated insulin secretion. Following exogenous glucagon administration, all HFF treatment groups displayed reduced (P < 0.05-0.001) glucose and insulin levels compared to HFF saline controls, although peripheral insulin sensitivity was largely unchanged across all animals. Interestingly, all treatments had tendency to increase pancreatic insulin content with pancreatic glucagon content significantly elevated (P < 0.05) by all interventions. These studies highlight the capacity of peptide-based GCGR inhibition, or GLP-1 receptor activation, to significantly improve metabolism in HFF mice but suggest no obvious additive benefits of combined therapy.


Asunto(s)
Diabetes Mellitus , Receptores de Glucagón , Animales , Glucemia , Dieta Alta en Grasa/efectos adversos , Exenatida/farmacología , Glucagón/metabolismo , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Glucosa/metabolismo , Insulina/metabolismo , Ratones , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo
10.
Peptides ; 152: 170772, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35202749

RESUMEN

The Avpr1a (V1a) and Avpr1b (V1b) receptor selective, vasopressin (AVP) analogue, Ac3IV has been shown to improve metabolism and pancreatic islet structure in diabetes and insulin resistance. The present study further investigates these actions by assessing the ability of Ac3IV to protect against pancreatic islet architectural disturbances induced by hydrocortisone (HC) treatment in transgenic Ins1Cre/+;Rosa26-eYFP mice, that possess beta-cell lineage tracing capabilities. HC intervention increased (p < 0.001) energy intake but reduced (p < 0.01) body weight gain, with no impact of Ac3IV. All HC mice had reduced (p < 0.05) circulating glucose, but plasma insulin and glucagon concentrations remained unchanged. However, HC mice presented with increased (p < 0.001) pancreatic insulin content, which was further augmented by Ac3IV. In addition, Ac3IV treatment countered HC-induced increases in islet-, beta- and alpha-cell areas (p < 0.01), as well as promoting islet number towards control levels. This was accompanied by reduced (p < 0.05) beta-cell growth, but enhanced (p < 0.001) alpha-cell proliferation. There were no changes in islet cell apoptotic rates in any of the groups of HC mice, but co-expression of CK19 with insulin in pancreatic ductal cells was reduced by Ac3IV. Assessment of beta-cell lineage revealed that Ac3IV partially protected against HC-mediated de-differentiation of mature beta-cells, whilst also decreasing (p < 0.01) beta- to alpha-cell transdifferentiation. Our data indicate that sustained activation of V1a and V1b receptors exerts positive islet cell transition effects to help retain beta-cell identity in HC mice.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Linaje de la Célula , Diabetes Mellitus Experimental/metabolismo , Hidrocortisona/farmacología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Receptores de Vasopresinas/metabolismo , Vasopresinas/metabolismo
11.
Mar Drugs ; 19(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34356808

RESUMEN

Protein hydrolysates from low-value underutilised fish species are potential sources of high-quality dietary protein and health enhancing peptides. Six blue whiting soluble protein hydrolysates (BW-SPH-A_F), generated at industrial scale using different hydrolysis conditions, were assessed in terms of their protein equivalent content, amino acid profile and score and physicochemical properties in addition to their ability to inhibit dipeptidyl peptidase IV (DPP-IV) and stimulate the secretion of insulin from BRIN-BD11 cells. Furthermore, the effect of simulated gastrointestinal digestion (SGID) on the stability of the BW-SPHs and their associated in vitro antidiabetic activity was investigated. The BW-SPHs contained between 70-74% (w/w) protein and all essential and non-essential amino acids. All BW-SPHs mediated DPP-IV inhibitory (IC50: 2.12-2.90 mg protein/mL) and insulin secretory activity (2.5 mg/mL; 4.7 to 6.4-fold increase compared to the basal control (5.6 mM glucose alone)). All BW-SPHs were further hydrolysed during SGID. While the in vitro DPP-IV inhibitory and insulin secretory activity mediated by some BW-SPHs was reduced following SGID, the activity remained high. In general, the insulin secretory activity of the BW-SPHs were 4.5-5.4-fold higher than the basal control following SGID. The BW-SPHs generated herein provide potential for anti-diabetic related functional ingredients, whilst also enhancing environmental and commercial sustainability.


Asunto(s)
Diabetes Mellitus Tipo 2 , Peces , Hidrolisados de Proteína/química , Animales , Línea Celular/efectos de los fármacos , Proteínas en la Dieta , Alimentos Funcionales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/metabolismo , Hidrolisados de Proteína/farmacología , Alimentos Marinos , Espectrometría de Masas en Tándem
12.
Front Endocrinol (Lausanne) ; 12: 689678, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093449

RESUMEN

Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón/uso terapéutico , Péptido 2 Similar al Glucagón/uso terapéutico , Glucagón/uso terapéutico , Proglucagón/uso terapéutico , Glucagón/metabolismo , Humanos , Proglucagón/metabolismo
13.
Front Endocrinol (Lausanne) ; 12: 674704, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054734

RESUMEN

Combined activation of GLP-1 and CCK1 receptors has potential to synergistically augment the appetite-suppressive and glucose homeostatic actions of the individual parent peptides. In the current study, pancreatic beta-cell benefits of combined GLP-1 and CCK1 receptor upregulation were established, before characterising bioactivity and antidiabetic efficacy of an acylated dual-acting GLP-1/CCK hybrid peptide, namely [Lys12Pal]Ex-4/CCK. Both exendin-4 and CCK exhibited (p<0.001) proliferative and anti-apoptotic effects in BRIN BD11 beta-cells. Proliferative benefits were significantly (p<0.01) augmented by combined peptide treatment when compared to either parent peptide alone. These effects were linked to increases (p<0.001) in GLUT2 and glucokinase beta-cell gene expression, with decreased (p<0.05-p<0.001) expression of NFκB and BAX. [Lys12Pal]Ex-4/CCK exhibited prominent insulinotropic actions in vitro, coupled with beneficial (p<0.001) satiety and glucose homeostatic effects in the mice, with bioactivity evident 24 h after administration. Following twice daily injection of [Lys12Pal]Ex-4/CCK for 28 days in diabetic high fat fed (HFF) mice with streptozotocin (STZ)-induced compromised beta-cells, there were clear reductions (p<0.05-p<0.001) in energy intake and body weight. Circulating glucose was returned to lean control concentrations, with associated increases (p<0.001) in plasma and pancreatic insulin levels. Glucose tolerance and insulin secretory responsiveness were significantly (p<0.05-p<0.001) improved by hybrid peptide therapy. In keeping with this, evaluation of pancreatic histology revealed restoration of normal islet alpha- to beta-cell ratios and reduction (p<0.01) in centralised islet glucagon staining. Improvements in pancreatic islet morphology were associated with increased (p<0.05) proliferation and reduced (p<0.001) apoptosis of beta-cells. Together, these data highlight the effectiveness of sustained dual GLP-1 and CCK1 receptor activation by [Lys12Pal]Ex-4/CCK for the treatment of obesity-related diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exenatida/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Obesidad/fisiopatología , Fragmentos de Péptidos/farmacología , Receptores de Colecistoquinina/metabolismo , Animales , Biomarcadores/sangre , Glucemia/análisis , Peso Corporal , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa , Péptido 1 Similar al Glucagón/genética , Hipoglucemiantes/farmacología , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Colecistoquinina/genética , Regulación hacia Arriba
14.
Front Endocrinol (Lausanne) ; 12: 633625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716983

RESUMEN

Enzymatically stable and specific neuropeptide Y1 receptor (NPYR1) agonists, such as sea lamprey PYY(1-36) (SL-PYY(1-36)), are believed to improve glucose regulation in diabetes by targeting pancreatic islets. In this study, streptozotocin (STZ) diabetic transgenic GluCreERT2 ;ROSA26-eYFP and Ins1Cre/+;Rosa26-eYFP mouse models have been used to study effects of sustained NPYR1 activation on islet cell composition and alpha- and beta-cell lineage transitioning. STZ induced a particularly severe form of diabetes in Ins1Cre/+;Rosa26-eYFP mice, but twice-daily administration (25 nmol/kg) of SL-PYY(1-36) for 11 days consistently improved metabolic status. Blood glucose was decreased (p < 0.05 - p < 0.001) and both fasted plasma and pancreatic insulin significantly increased by SL-PYY(1-36). In both GluCreERT2 ;ROSA26-eYFP and Ins1Cre/+; Rosa26-eYFP mice, STZ provoked characteristic losses (p < 0.05 - p < 0.001) of islet numbers, beta-cell and pancreatic islet areas together with increases in area and central islet location of alpha-cells. With exception of alpha-cell area, these morphological changes were fully, or partially, returned to non-diabetic control levels by SL-PYY(1-36). Interestingly, STZ apparently triggered decreased (p < 0.001) alpha- to beta-cell transition in GluCreERT2 ;ROSA26-eYFP mice, together with increased loss of beta-cell identity in Ins1Cre/+;Rosa26-eYFP mice, but both effects were significantly (p < 0.001) reversed by SL-PYY(1-36). SL-PYY(1-36) also apparently reduced (p < 0.05) beta- to alpha-cell conversion in Ins1Cre/+;Rosa26-eYFP mice and glucagon expressing alpha-cells in GluCreERT2 ;ROSA26-eYFP mice. These data indicate that islet benefits of prolonged NPY1R activation, and especially restoration of beta-cell mass, are observed irrespective of diabetes status, being linked to cell lineage alterations including transdifferentiation of alpha- to beta-cells.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Islotes Pancreáticos/metabolismo , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Animales , Proteínas Bacterianas/química , Glucemia/metabolismo , Diferenciación Celular , Glucagón/farmacología , Insulina/farmacología , Proteínas Luminiscentes/química , Ratones , Ratones Endogámicos C57BL , Péptidos , Petromyzon , Estreptozocina , Transgenes
15.
Curr Opin Endocrinol Diabetes Obes ; 28(2): 253-261, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33395088

RESUMEN

PURPOSE OF REVIEW: The antiobesity effects of activation of hypothalamic neuropeptide Y2 receptors (NPYR2) by the gut-derived hormone, peptide YY (PYY), are established. However, more recent insight into the biology of PYY has demonstrated remarkable benefits of sustained activation of pancreatic beta-cell NPYR1, that promises to open a new therapeutic avenue in diabetes. RECENT FINDINGS: The therapeutic applicability of NPYR2 agonists for obesity has been considered for many years. An alternative pathway for the clinical realisation of PYY-based drugs could be related to the development of NPYR1 agonists for treatment of diabetes. Thus, although stimulation of NPYR1 on pancreatic beta-cells has immediate insulinostatic effects, prolonged activation of these receptors leads to well defined beta-cell protective effects, with obvious positive implications for the treatment of diabetes. In this regard, NPYR1-specific, long-acting enzyme resistant PYY analogues, have been recently developed with encouraging preclinical effects observed on pancreatic islet architecture in diabetes. In agreement, the benefits of certain types of bariatric surgeries on beta-cell function and responsiveness have also been linked to elevated PYY secretion and NPY1 receptor activation. SUMMARY: Enzymatically stable forms of PYY, that selectively activate NPYR1, may have significant potential for preservation of beta-cell mass and the treatment of diabetes.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Obesidad/tratamiento farmacológico , Péptido YY
16.
Metabolism ; 111: 154339, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32777442

RESUMEN

BACKGROUND: Activation of neuropeptide Y2 receptors (NPYR2) by the N-terminally truncated, dipeptidyl peptidase-4 (DPP-4) generated, Peptide YY (PYY) metabolite, namely PYY(3-36), results in satiating actions. However, PYY(3-36) is also subject to C-terminal enzymatic cleavage, which annuls anorectic effects. METHODS: Substitution of l-Arg35 with d-Arg35 in the DPP-4 stable sea lamprey PYY(1-36) peptide imparts full C-terminal stability. In the current study, we have taken this molecule and introduced DPP-4 susceptibility by Iso3 substitution. RESULTS: As expected, [Iso3]sea lamprey PYY(1-36) and [Iso3](d-Arg35)sea lamprey PYY(1-36) were N-terminally degraded to respective PYY(3-36) metabolites in plasma. Only [Iso3](d-Arg35)sea lamprey PYY(1-36) was C-terminally stable. Both peptides possessed similar insulinostatic and anti-apoptotic biological actions to native PYY(1-36) in beta-cells. Unlike native PYY(1-36) and [Iso3](d-Arg35)sea lamprey PYY(1-36), [Iso3]sea lamprey PYY(1-36) displayed some proliferative actions in Npyr1 knockout beta-cells. In addition, [Iso3]sea lamprey PYY(1-36) induced more rapid NPYR2-dependent appetite suppressive effects in mice than its C-terminally stable counterpart. Twice daily administration of either peptide to high fat fed (HFF) mice resulted in significant body weight reduction and improvements in circulating triglyceride levels. [Iso3]sea lamprey PYY(1-36) treatment also prevented elevations in glucagon. Both peptides, and especially [Iso3]sea lamprey PYY(1-36), improved glucose tolerance. The treatment interventions also partially reversed the deleterious effects of sustained high fat feeding on pancreatic islet morphology. CONCLUSION: The present study confirms that sustained NPYR2 receptor activation by [Iso3](d-Arg35)sea lamprey induced significant weight lowering actions. However, identifiable benefits of this peptide over [Iso3]sea lamprey PYY(1-36), which was not protected against C-terminal degradation, were not pronounced.


Asunto(s)
Péptido YY/metabolismo , Receptores de Neuropéptido Y/metabolismo , Animales , Línea Celular , Dipeptidil Peptidasa 4/metabolismo , Glucagón/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratones
17.
Biochim Biophys Acta Gen Subj ; 1864(5): 129543, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32007578

RESUMEN

BACKGROUND: PYY (1-36) peptides from phylogenetically ancient fish, such as sea lamprey, have previously been shown to function as specific neuropeptide Y1 receptor (NPYR1) agonists. Although, sea lamprey PYY (1-36) is N-terminally stable, we reveal in this study that the peptide is subject to endopeptidase mediated C-terminal dipeptide degradation. In an attempt to prevent this, (d-Arg35)-sea lamprey PYY (1-36) was developed. METHODS: In vitro bioassays assessed enzymatic stability, insulinostatic activity as well as beta-cell anti-apoptotic actions of (d-Arg35)-sea lamprey PYY (1-36). Follow-up studies examined the impact of twice daily administration of sea lamprey PYY (1-36) or (d-Arg35)-sea lamprey PYY (1-36) in multiple low dose STZ-induced diabetic mice. RESULTS: (d-Arg35)-sea lamprey PYY (1-36) was fully resistant to plasma enzymatic degradation. The peptide possessed similar significant insulinostatic, as well as positive anti-apoptotic biological actions, as the parent peptide. Sea lamprey PYY (1-36) and (d-Arg35)-sea lamprey PYY (1-36) delayed diabetes progression in STZ mice. Both treatment interventions induced a significant decrease in body weight, food and fluid intake as well as glucose and glucagon concentrations. In addition, glucose tolerance, plasma and pancreatic insulin were partially normalised. (d-Arg35)-sea lamprey PYY (1-36) was significantly more effective than sea lamprey PYY (1-36) in terms of enhancing glucose-stimulate insulin release. Both treatments improved pancreatic islet morphology, linked to decreased apoptosis of beta-cells. CONCLUSION: We present (d-Arg35)-sea lamprey PYY (1-36) as the first-in-class N- and C-terminally stable PYY (1-36) peptide analogue. GENERAL SIGNIFICANCE: Enzymatically stable, long-acting PYY (1-36) peptides highlight the therapeutic benefits of sustained activation of NPYR1's in diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Péptidos/uso terapéutico , Sustancias Protectoras/uso terapéutico , Receptores de Neuropéptido Y/agonistas , Animales , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/prevención & control , Proteínas de Peces/química , Proteínas de Peces/uso terapéutico , Hipoglucemiantes/química , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Péptidos/química , Petromyzon , Sustancias Protectoras/química , Receptores de Neuropéptido Y/metabolismo
18.
Diabetes Obes Metab ; 22(3): 404-416, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692207

RESUMEN

AIM: To investigate the antidiabetic efficacy of enzymatically stable Peptide YY (PYY) peptides from phylogenetically ancient fish. MATERIALS AND METHODS: N-terminally stabilized, PYY (1-36) sequences from Amia calva (bowfin), Oncorhynchus mykiss (trout), Petromyzon marinus (sea lamprey) and Scaphirhynchus albus (sturgeon), were synthesized, and both biological actions and antidiabetic therapeutic efficacy were assessed. RESULTS: All fish PYY (1-36) peptides were resistant to dipeptidyl peptidase-4 (DPP-4) degradation and inhibited glucose- and alanine-induced (P < 0.05 to P < 0.001) insulin secretion. In addition, PYY (1-36) peptides imparted significant (P < 0.05 to P < 0.001) ß-cell proliferative and anti-apoptotic benefits. Proliferative effects were almost entirely absent in ß cells with CRISPR-Cas9-induced knockout of Npyr1. In contrast to human PYY (1-36), the piscine-derived peptides lacked appetite-suppressive actions. Twice-daily administration of sea lamprey PYY (1-36), the superior bioactive peptide, for 21 days significantly (P < 0.05 to P < 0.001) decreased fluid intake, non-fasting glucose and glucagon in streptozotocin (STZ)-induced diabetic mice. In addition, glucose tolerance, insulin sensitivity, pancreatic insulin and glucagon content were significantly improved. Metabolic benefits were linked to positive changes in pancreatic islet morphology as a result of augmented (P < 0.001) proliferation and decreased apoptosis of ß cells. Sturgeon PYY (1-36) exerted similar but less impressive effects in STZ mice. CONCLUSION: These observations reveal, for the first time, that PYY (1-36) peptide sequences from phylogenetically ancient fish replicate the pancreatic ß-cell benefits of human PYY (1-36) and have clear potential for the treatment of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuropéptidos , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratones , Péptido YY
19.
Clin Med Insights Endocrinol Diabetes ; 12: 1179551419855626, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244528

RESUMEN

Recent studies have identified a beneficial role for peptide tyrosine tyrosine (PYY) on pancreatic beta-cell function and survival. These effects are linked to the activation of neuropeptide Y1 receptors (NPYR1s) by PYY(1-36). However, PYY(1-36) is subject to rapid degradation by dipeptidyl peptidase-4 (DPP-4), resulting is the loss of NPYR1 activity. Therefore, the aim of this study was to develop 2 enzymatically stable PYY(1-36) analogues, namely, (P3L31P34)PYY(1-36) and PYY(1-36)(Lys12PAL), with further structural modifications to enhance NPYR1 specificity. As expected, (P3L31P34)PYY(1-36) was fully resistant to DPP-4-mediated degradation in vitro, whereas PYY(1-36) and PYY(1-36)(Lys12PAL) were both liable to DPP-4 breakdown. PYY(1-36) and (P3L31P34)PYY(1-36) induced significant reductions in glucose-stimulated insulin secretion (GSIS) from BRIN BD11 cells, but only PYY(1-36) diminished alanine-stimulated insulin secretion. In contrast, PYY(1-36)(Lys12PAL) had no impact on GSIS or alanine-induced insulin release. All 3 PYY peptides significantly enhanced proliferation in BRIN BD11 and 1.1B4 beta-cell lines, albeit only at the highest concentration examined, 10-6 M, for (P3L31P34)PYY(1-36) and PYY(1-36)(Lys12PAL) in BRIN BD11 cells. Regarding the protection of beta-cells against cytokine-induced apoptosis, PYY(1-36) induced clear protective effects. Both (P3L31P34)PYY(1-36) and PYY(1-36)(Lys12PAL) offered some protection against apoptosis in BRIN BD11 cells, but were significantly less efficacious than PYY(1-36). Similarly, in 1.1B4 cells, both PYY analogues (10-6 M) protected against cytokine-induced apoptosis, but (P3L31P34)PYY(1-36) was significantly less effective than PYY(1-36). All 3 PYY peptides had no impact on refeeding in overnight fasted mice. These data underline the beta-cell benefits of PYY(1-36) and highlight the challenges of synthesising stable, bioactive, NPYR1-specific, PYY(1-36) analogues.

20.
Peptides ; 100: 269-274, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29412828

RESUMEN

The vast majority of research to date on the gut hormone Peptide YY (PYY) has focused on appetite suppression and body weight regulation effects. These biological actions are believed to occur through interaction of PYY with hypothalamic Y2 receptors. However, more recent studies have added additional knowledge to understanding of the physiological, and potential therapeutic, roles of PYY beyond obesity alone. Thus, PYY has now been shown to impart improvements in pancreatic beta-cell survival and function, with obvious benefits for diabetes. This effect has been linked mainly to binding and activation of Y1 receptors by PYY, but more evidence is still required in this regard. Given the potential therapeutic promise of PYY-derived compounds, and complexity of receptor interactions, it is important to fully understand the complete biological action profile of PYY. Therefore, the current review aims to compile, evaluate and summarise current knowledge on PYY, with particular emphasis on obesity and diabetes treatment, and the importance of specific Y receptor interactions for this.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Péptido YY/uso terapéutico , Receptores de Neuropéptido Y/genética , Regulación del Apetito/efectos de los fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Humanos , Hipotálamo/metabolismo , Obesidad/metabolismo , Obesidad/patología , Fragmentos de Péptidos/uso terapéutico , Péptido YY/metabolismo , Receptores de Neuropéptido Y/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...