Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Regul Toxicol Pharmacol ; 149: 105619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614220

RESUMEN

The Xenopus Eleutheroembryonic Thyroid Assay (XETA) was recently published as an OECD Test Guideline for detecting chemicals acting on the thyroid axis. However, the OECD validation did not cover all mechanisms that can potentially be detected by the XETA. This study was therefore initiated to investigate and consolidate the applicability domain of the XETA regarding the following mechanisms: thyroid hormone receptor (THR) agonism, sodium-iodide symporter (NIS) inhibition, thyroperoxidase (TPO) inhibition, deiodinase (DIO) inhibition, glucocorticoid receptor (GR) agonism, and uridine 5'-diphospho-glucuronosyltransferase (UDPGT) induction. In total, 22 chemicals identified as thyroid-active or -inactive in Amphibian Metamorphosis Assays (AMAs) were tested using the XETA OECD Test Guideline. The comparison showed that both assays are highly concordant in identifying chemicals with mechanisms of action related to THR agonism, DIO inhibition, and GR agonism. They also consistently identified the UDPGT inducers as thyroid inactive. NIS inhibition, investigated using sodium perchlorate, was not detected in the XETA. TPO inhibition requires further mechanistic investigations as the reference chemicals tested resulted in opposing response directions in the XETA and AMA. This study contributes refining the applicability domain of the XETA, thereby helping to clarify the conditions where it can be used as an ethical alternative to the AMA.


Asunto(s)
Bioensayo , Disruptores Endocrinos , Metamorfosis Biológica , Simportadores , Glándula Tiroides , Animales , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Bioensayo/métodos , Disruptores Endocrinos/toxicidad , Xenopus laevis , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/agonistas , Yoduro Peroxidasa/metabolismo
2.
Regul Toxicol Pharmacol ; 145: 105501, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820895

RESUMEN

Vitellogenin (VTG) is a biomarker for possible endocrine activity of chemicals acting via the estrogen, androgen, or steroidogenesis pathways. VTG is assessed in standardised fish guideline studies conducted for regulatory safety assessment of chemicals. VTG data can be highly variable leading to concerns for potential equivocal, false positive and/or negative outcomes. Consequently, additional fish testing may be required to address uncertainties in the VTG response, and possibly erroneous/missed identification of endocrine activity. To better understand the technical challenges of VTG assessment and reporting for regulatory purposes, a survey was sent to 27 testing laboratories performing these analyses. The survey results from 16 respondents (6 from the UK, 3 from the USA, and 7 from the EU) were analysed and discussed in a follow-up webinar. High variability in background VTG concentrations was widely acknowledged and thought to be associated with fish batch, husbandry, laboratory practices, and several methodological aspects. These include sample collection and storage, VTG quantification, data handling, and the benchmarks used for data acceptability. Information gathered in the survey provides a basis for improving and harmonizing the measurement of VTG in fish, and an opportunity to reassess the suitability of current acceptability criteria in test guidelines.


Asunto(s)
Vitelogeninas , Contaminantes Químicos del Agua , Animales , Vitelogeninas/metabolismo , Laboratorios , Peces/metabolismo , Estrógenos/metabolismo , Sistema Endocrino , Contaminantes Químicos del Agua/análisis
3.
Ecotoxicol Environ Saf ; 266: 115563, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827093

RESUMEN

Vitellogenin (VTG), a biomarker for endocrine activity, is a mechanistic component of the regulatory assessment of potential endocrine-disrupting properties of chemicals. This review of VTG data is based on changes reported for 106 substances in standard fish species. High intra-study and inter-laboratory variability in VTG concentrations was confirmed, as well as discrepancies in interpretation of results based on large differences between fish in the dilution water versus solvent control, or due to the presence of outlier measurements. VTG responses in fish were ranked against predictions for estrogen receptor agonist activity and aromatase inhibition from bioactivity model output and ToxCast in vitro assay results, respectively. These endocrine mechanisms explained most of the VTG responses in the absence of systemic toxicity, the magnitude of the VTG response being proportional to the in vitro potency. Interpretation of the VTG data was sometimes confounded by an alternative endocrine mechanism of action. There was evidence for both false positive and negative responses for VTG synthesis, but overall, it was rare for substances without endocrine activity in vitro to cause a concentration-dependent VTG response in fish in the absence of systemic toxicity. To increase confidence in the VTG results, we recommend improvements in the VTG measurement methodologies and greater transparency in reporting of VTG data (including quality control criteria for assay performance). This review supports the application of New Approach Methodologies (NAMs) by demonstrating that endocrine activity in vitro from mammalian cell lines is predictive for in vivo VTG response in fish, suggesting that in vitro mechanistic data could be used more broadly in decision-making to help reduce animal testing.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Vitelogeninas/metabolismo , Peces/metabolismo , Estrógenos/metabolismo , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/metabolismo , Contaminantes Químicos del Agua/análisis , Mamíferos/metabolismo
4.
Crit Rev Toxicol ; 53(5): 326-338, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37526219

RESUMEN

A systematic review was conducted on the sensitivity of fish testing guidelines to detect the anti-androgenic activity of substances. Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) was used to investigate the conservation of the androgen receptor (AR) between humans and fish, and among fish species recommended in test guidelines. The AR is conserved between fish species and humans (i.e. ligand binding domain [LBD] homology ≥70%) and among the recommended fish species (LBD homology >85%). For model anti-androgens, we evaluated literature data on in vitro anti-androgenic activity in fish-specific receptor-based assays and changes in endpoints indicative of endocrine modulation from in vivo studies. Anti-androgenic activity was most consistently and reliably detected in in vitro and in vivo mechanistic studies with co-exposure to an androgen (spiggin in vitro assay, Rapid Androgen Disruption Activity Reporter [RADAR] Assay, and Androgenised Female Stickleback Screen). Regardless of study design (Fish Short-Term Reproduction Assay [FSTRA], Fish Sexual Development Test [FSDT], partial or full life-cycle tests), or endpoint (vitellogenin, secondary sexual characteristics, gonadal histopathology, sex ratio), there was no consistent evidence for detecting anti-androgenic activity in studies without androgen co-exposure, even for the most potent substances (while less potent substances may induce no (clear) response). Therefore, based on studies without androgen co-exposure (35 FSTRAs and 22 other studies), the other studies (including the FSDT) do not outperform the FSTRA for detecting potent anti-androgenic activity, which if suspected, would be best addressed with a RADAR assay. Overall, fish do not appear particularly sensitive to mammalian anti-androgens.


Asunto(s)
Antagonistas de Andrógenos , Smegmamorpha , Animales , Humanos , Femenino , Andrógenos/farmacología , Peces , Smegmamorpha/fisiología , Mamíferos
5.
Environ Toxicol Chem ; 42(4): 757-777, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36789969

RESUMEN

Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an "animal-free" testing paradigm worldwide. New approach methodologies (NAMs) hold great promise to identify molecular, cellular, and tissue changes that can be used to predict effects reliably and more efficiently at the individual level (and potentially on populations) while reducing the number of animals used in (eco)toxicological testing for endocrine disruption. In a collaborative effort, experts from government, academia, and industry met in 2020 to discuss the current challenges of testing for endocrine activity assessment for fish and amphibians. Continuing this cross-sector initiative, our review focuses on the current state of the science regarding the use of NAMs to identify chemical-induced endocrine effects. The present study highlights the challenges of using NAMs for safety assessment and what work is needed to reduce their uncertainties and increase their acceptance in regulatory processes. We have reviewed the current NAMs available for endocrine activity assessment including in silico, in vitro, and eleutheroembryo models. New approach methodologies can be integrated as part of a weight-of-evidence approach for hazard or risk assessment using the adverse outcome pathway framework. The development and utilization of NAMs not only allows for replacement, reduction, and refinement of animal testing but can also provide robust and fit-for-purpose methods to identify chemicals acting via endocrine mechanisms. Environ Toxicol Chem 2023;42:757-777. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Disruptores Endocrinos , Animales , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/análisis , Peces , Ecotoxicología , Anfibios , Sistema Endocrino , Medición de Riesgo , Mamíferos
6.
Integr Environ Assess Manag ; 19(4): 1089-1109, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36597818

RESUMEN

The toxicity and ecotoxicity of pesticide active ingredients are evaluated by a number of standardized test methods using vertebrate animals. These standard test methods are required under various regulatory programs for the registration of pesticides. Over the past two decades, additional test methods have been developed with endpoints that are responsive to endocrine activity and subsequent adverse effects. This article examines the available test methods and their endpoints that are relevant to an assessment of endocrine-disrupting properties of pesticides. Furthermore, the article highlights how weight-of-evidence approaches should be applied to determine whether an adverse response in (eco)toxicity tests is caused by an endocrine mechanism of action. The large number of endpoints in the current testing paradigms for pesticides make it unlikely that endocrine activity and adversity is being overlooked. Integr Environ Assess Manag 2023;19:1089-1109. © 2023 Bayer CropScience and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Disruptores Endocrinos , Plaguicidas , Animales , Animales Salvajes , Plaguicidas/toxicidad , Disruptores Endocrinos/toxicidad , Medición de Riesgo/métodos , Vertebrados , Ecotoxicología/métodos
8.
Environ Toxicol Chem ; 40(8): 2135-2144, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33939850

RESUMEN

The amphibian metamorphosis assay (AMA; US Environmental Protection Agency [USEPA] test guideline 890.1100 and Organisation for Economic Co-Operation and Development test guideline 231) has been used for more than a decade to assess the potential thyroid-mediated endocrine activity of chemicals. In 2013, in the context of the Endocrine Disruptor Screening Program of the USEPA, a Scientific Advisory Panel reviewed the results from 18 studies and recommended changes to the AMA test guideline, including a modification to a fixed-stage design rather than a fixed-time (i.e., 21-d) design. We describe an extended test design for the AMA (or EAMA) that includes thyroid histopathology and time to metamorphosis (Nieuwkoop-Faber [NF] stage 62), to address both the issues with the fixed-time design and the specific question of thyroid-mediated adversity in a shorter assay than the larval amphibian growth and development assay (LAGDA; Organisation for Economic Co-Operation and Development test guideline 241), using fewer animals and resources. A demonstration study was conducted with the EAMA (up to NF stage 58) using sodium perchlorate. Data analyses and interpretation of the fixed-stage design of the EAMA are more straightforward than the fixed-time design because the fixed-stage design avoids confounded morphometric measurements and thyroid histopathology caused by varying developmental stages at test termination. It also results in greater statistical power to detect metamorphic delays than the fixed-time design. By preferentially extending the AMA to NF stage 62, suitable data can be produced to evaluate thyroid-mediated adversity and preclude the need to perform a LAGDA for thyroid mode of action analysis. The LAGDA remains of further interest should investigations of longer term effects related to sexual development modulated though the hypothalamus-pituitary-gonadal axis be necessary. However, reproduction assessment or life cycle testing is currently not addressed in the LAGDA study design. This is better addressed by higher tier studies in fish, which should then include specific thyroid-related endpoints. Environ Toxicol Chem 2021;40:2135-2144. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Disruptores Endocrinos , Animales , Disruptores Endocrinos/toxicidad , Metamorfosis Biológica , Glándula Tiroides , Xenopus laevis
14.
Integr Environ Assess Manag ; 15(2): 278-291, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30520244

RESUMEN

The European Commission intends to protect vertebrate wildlife populations by regulating plant protection product (PPP) active substances that have endocrine-disrupting properties with a hazard-based approach. In this paper we consider how the Commission's hazard-based regulation and accompanying guidance can be operationalized to ensure that a technically robust process is used to distinguish between substances with adverse population-level effects and those for which it can be demonstrated that adverse effects observed (typically in the laboratory) do not translate into adverse effects at the population level. Our approach is to use population models within the adverse outcome pathway framework to link the nonlinear relationship between adverse effects at the individual and population levels in the following way: (1) use specific protection goals for focal wildlife populations within an ecosystem services framework; (2) model the effects of changes in population-related inputs on focal species populations with individual-based population models to determine thresholds between negligible and nonnegligible (i.e., adverse) population-level effects; (3) compare these thresholds with the relevant endpoints from laboratory toxicity tests to determine whether they are likely to be exceeded at hazard-based limits or the maximum tolerated dose/concentration from the experimental studies. If the population threshold is not exceeded, then the substance should not be classified as an endocrine disruptor with population-relevant adversity unless there are other lines of evidence within a weight-of-evidence approach to challenge this. We believe this approach is scientifically robust and still addresses the political and legal requirement for a hazard-based assessment. Integr Environ Assess Manag 2019;15:278-291. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Medición de Riesgo/métodos , Anfibios , Animales , Aves , Peces , Mamíferos
15.
Rev Environ Contam Toxicol ; 245: 65-127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29119384

RESUMEN

Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions, showing that they are as sensitive as molluscs, and for some species, even more sensitive. Concentrations in the range of 1 ng/L for water exposure (10 ng/g for whole-body burden) have been shown to elicit endocrine-type responses, whereas mortality occurs at water concentrations ten times higher. Current screening and assessment methodologies as compiled in the OECD CFEDTA are able to identify TBT as a potent endocrine disruptor with a high environmental risk for the original use pattern. If those approaches had been available when TBT was introduced to the market, it is likely that its use would have been regulated sooner, thus avoiding the detrimental effects on marine gastropod populations and communities as documented over several decades.


Asunto(s)
Ecología/tendencias , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/análisis , Compuestos de Trialquiltina/toxicidad , Animales , Disruptores Endocrinos/análisis , Disruptores Endocrinos/metabolismo , Exposición a Riesgos Ambientales/efectos adversos , Guías como Asunto , Humanos , Agencias Internacionales , Medición de Riesgo , Pruebas de Toxicidad , Compuestos de Trialquiltina/análisis , Compuestos de Trialquiltina/metabolismo
16.
Chemosphere ; 185: 888-898, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28746998

RESUMEN

Chlordecone is a persistent organochlorine pesticide that has been widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus from 1972 to 1993. A few years after its introduction, widespread contamination of soils, rivers, wild animals and aquatic organisms was reported. Although high chlordecone concentrations have been reported in several crustacean species, its uptake, internal distribution, and elimination in aquatic species have never been described. This study aimed at investigating the accumulation and tissue distribution of chlordecone in the giant freshwater prawn Macrobrachium rosenbergii, using both laboratory (30 days exposure) and field (8 months exposure) approaches. In addition, depuration in chlordecone-free water was studied. Results showed that chlordecone bioconcentration in prawns was dose-dependent and time-dependent. Moreover, females appeared to be less contaminated than males after 5 and 7 months of exposure, probably due to successive spawning leading in the elimination of chlordecone through the eggs. Chlordecone distribution in tissues of exposed prawns showed that cephalothorax organs, mainly represented by the hepatopancreas, was the most contaminated. Results also showed that chlordecone was accumulated in cuticle, up to levels of 40% of the chlordecone body burden, which could be considered as a depuration mechanism since chlordecone is eliminated with the exuviae during successive moults. Finally, this study underlined the similarity of results obtained in laboratory and field approaches, which highlights their complementarities in the chlordecone behaviour understanding in M. rosenbergii.


Asunto(s)
Clordecona/metabolismo , Insecticidas/metabolismo , Palaemonidae/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Clordecona/análisis , Monitoreo del Ambiente , Femenino , Agua Dulce , Guadalupe , Hepatopáncreas/metabolismo , Insecticidas/análisis , Masculino , Musa , Suelo , Contaminantes Químicos del Agua/análisis
17.
Chemosphere ; 181: 589-599, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28472747

RESUMEN

Mollusks are known to be uniquely sensitive to a number of reproductive toxicants including some vertebrate endocrine disrupting chemicals. However, they have widely been ignored in environmental risk assessment procedures for chemicals. This study describes the validation of the Potamopyrgus antipodarum reproduction test within the OECD Conceptual Framework for Endocrine Disrupters Testing and Assessment. The number of embryos in the brood pouch and adult mortality serve as main endpoints. The experiments are conducted as static systems in beakers filled with artificial medium, which is aerated trough glass pipettes. The test chemical is dispersed into the medium, and adult snails are subsequently introduced into the beakers. After 28 days the reproductive success is determined by opening the brood pouch and embryo counting. This study presents the results of two validation studies of the reproduction test with eleven laboratories and the chemicals tributyltin (TBT) with nominal concentrations ranging from 10 to 1000 ng TBT-Sn/L and cadmium with concentrations from 1.56 to 25 µg/L. The test design could be implemented by all laboratories resulting in comparable effect concentrations for the endpoint number of embryos in the brood pouch. After TBT exposure mean EC10, EC50, NOEC and LOEC were 35.6, 127, 39.2 and 75.7 ng Sn/L, respectively. Mean effect concentrations in cadmium exposed snails were, respectively, 6.53, 14.2, 6.45 and 12.6 µg/L. The effect concentrations are in good accordance with already published data. Both validation studies show that the reproduction test with P. antipodarum is a well-suited tool to assess reproductive effects of chemicals.


Asunto(s)
Guías como Asunto/normas , Organización para la Cooperación y el Desarrollo Económico/normas , Caracoles/efectos de los fármacos , Pruebas de Toxicidad/normas , Contaminantes Químicos del Agua/toxicidad , Animales , Cadmio/toxicidad , Disruptores Endocrinos/toxicidad , Reproducción/efectos de los fármacos , Pruebas de Toxicidad/métodos , Compuestos de Trialquiltina/toxicidad
18.
Ecotoxicology ; 26(3): 370-382, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28168557

RESUMEN

The Organisation for Economic Cooperation and Development (OECD) provides several standard test methods for the environmental hazard assessment of chemicals, mainly based on primary producers, arthropods, and fish. In April 2016, two new test guidelines with two mollusc species representing different reproductive strategies were approved by OECD member countries. One test guideline describes a 28-day reproduction test with the parthenogenetic New Zealand mudsnail Potamopyrgus antipodarum. The main endpoint of the test is reproduction, reflected by the embryo number in the brood pouch per female. The development of a new OECD test guideline involves several phases including inter-laboratory validation studies to demonstrate the robustness of the proposed test design and the reproducibility of the test results. Therefore, a ring test of the reproduction test with P. antipodarum was conducted including eight laboratories with the test substances trenbolone and prochloraz and results are presented here. Most laboratories could meet test validity criteria, thus demonstrating the robustness of the proposed test protocol. Trenbolone did not have an effect on the reproduction of the snails at the tested concentration range (nominal: 10-1000 ng/L). For prochloraz, laboratories produced similar EC10 and NOEC values, showing the inter-laboratory reproducibility of results. The average EC10 and NOEC values for reproduction (with coefficient of variation) were 26.2 µg/L (61.7%) and 29.7 µg/L (32.9%), respectively. This ring test shows that the mudsnail reproduction test is a well-suited tool for use in the chronic aquatic hazard and risk assessment of chemicals.


Asunto(s)
Monitoreo del Ambiente/métodos , Guías como Asunto , Imidazoles/toxicidad , Organización para la Cooperación y el Desarrollo Económico , Caracoles/fisiología , Pruebas de Toxicidad/estadística & datos numéricos , Acetato de Trembolona/toxicidad , Contaminantes Químicos del Agua/toxicidad , Anabolizantes , Animales , Disruptores Endocrinos , Monitoreo del Ambiente/normas , Femenino , Fungicidas Industriales/toxicidad , Nueva Zelanda , Reproducibilidad de los Resultados , Reproducción/efectos de los fármacos , Medición de Riesgo/métodos , Medición de Riesgo/normas
19.
Integr Environ Assess Manag ; 13(2): 267-279, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28127947

RESUMEN

A SETAC Pellston Workshop® "Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS-not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17ß-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and sufficiently reliable and protective of the environment. In the absence of such data, assessment on the basis of hazard is scientifically justified until such time as relevant new information is available. Integr Environ Assess Manag 2017;13:267-279. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Disruptores Endocrinos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/análisis , Conferencias de Consenso como Asunto , Ecotoxicología , Disruptores Endocrinos/normas , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/normas , Contaminantes Ambientales/toxicidad , Medición de Riesgo
20.
Integr Environ Assess Manag ; 13(2): 317-330, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28052490

RESUMEN

For ecotoxicological risk assessment, endocrine disruptors require the establishment of an endocrine mode of action (MoA) with a plausible link to a population-relevant adverse effect. Current ecotoxicity test methods incorporate mostly apical endpoints although some also include mechanistic endpoints, subcellular-through-organ level, which can help establish an endocrine MoA. However, the link between these endpoints and adverse population-level effects is often unclear. The case studies of endocrine-active substances (EAS) (tributyltin, ethinylestradiol, perchlorate, trenbolone, propiconazole, and vinclozolin) evaluated from the Society of Environmental Toxicology and Chemistry (SETAC) Pellston Workshop® "Ecotoxicological Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)" were used to evaluate the population relevance of toxicity endpoints in various taxa according to regulatory endocrine-disruptor frameworks such as the Organisation for Economic Co-operation and Development (OECD) Conceptual Framework for Testing and Assessment of Endocrine Disruptors. A wide variety of potentially endocrine-relevant endpoints were identified for mollusks, fish, amphibians, birds, and mammals, although the strength of the relationship between test endpoints and population-level effects was often uncertain. Furthermore, testing alone is insufficient for assessing potential adaptation and recovery processes in exposed populations. For this purpose, models that link effects observed in laboratory tests to the dynamics of wildlife populations appear to be necessary, and their development requires reliable and robust data. As our understanding of endocrine perturbations and key event relationships improves, adverse population-level effects will be more easily and accurately predicted. Integr Environ Assess Manag 2017;13:317-330. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Disruptores Endocrinos/toxicidad , Monitoreo del Ambiente , Contaminantes Ambientales/toxicidad , Animales , Ecotoxicología , Disruptores Endocrinos/normas , Contaminantes Ambientales/normas , Humanos , Agencias Internacionales , Mamíferos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...