Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1380902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071799

RESUMEN

Idiopathic subglottic stenosis (ISGS) is a rare fibrotic disease of the upper trachea with an unknown pathomechanism. It typically affects adult Caucasian female patients, leading to severe airway constrictions caused by progressive scar formation and inflammation with clinical symptoms of dyspnoea, stridor and potential changes to the voice. Endoscopic treatment frequently leads to recurrence, whereas surgical resection and reconstruction provides excellent long-term functional outcome. This study aimed to identify so far unrecognized pathologic aspects of ISGS using single cell RNA sequencing. Our scRNAseq analysis uncovered the cellular composition of the subglottic scar tissue, including the presence of a pathologic, profibrotic fibroblast subtype and the presence of Schwann cells in a profibrotic state. In addition, a pathology-associated increase of plasma cells was identified. Using extended bioinformatics analyses, we decoded pathology-associated changes of factors of the extracellular matrix. Our data identified ongoing fibrotic processes in ISGS and provide novel insights on the contribution of fibroblasts, Schwann cells and plasma cells to the pathogenesis of ISGS. This knowledge could impact the development of novel approaches for diagnosis and therapy of ISGS.

2.
Cells ; 12(3)2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36766722

RESUMEN

BACKGROUND: Antithymocyte globulins (ATG) are T cell-depleting antibodies used in solid organ transplantation for induction therapy in sensitized patients with a high risk of graft rejection. Previously described effects besides the depletion of T cells have suggested additional modes of action and identified further cellular targets. METHODS: We examined the transcriptional changes arising in immune cells from human blood after ex vivo stimulation with ATG at the single-cell level to uncover additional mechanisms by which ATG regulates T cell activity and effector functions. FINDINGS: Analysis of the paracrine factors present in the plasma of ATG-treated whole blood revealed high levels of chemokines and cytokines, including interferon-γ (IFN-γ). Furthermore, we identified an increase in the surface expression of the programmed death ligand 1 (PDL-1) on monocytes mediated by the released paracrine factors. In addition, we showed that this induction is dependent on the activation of JAK/STAT signaling via the binding of IFN-γ to interferon-γ receptor 1 (IFN-γR1). Lastly, we demonstrated that the modulation of the immune regulatory axis of programmed cell death protein 1 (PD1) on activated CD8+ T cells with PDL-1 found on monocytes mediated by ATG potently inhibits effector functions including the proliferation and granzyme B release of activated T cells. INTERPRETATION: Together, our findings represent a novel mode of action by which ATG exerts its immunosuppressive effects.


Asunto(s)
Suero Antilinfocítico , Linfocitos T CD8-positivos , Humanos , Suero Antilinfocítico/farmacología , Interferón gamma/metabolismo , Monocitos/metabolismo
3.
Exp Mol Med ; 54(11): 1886-1900, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36333467

RESUMEN

Recently, a specific Schwann cell type with profibrotic and tissue regenerative properties that contributes to keloid formation has been identified. In the present study, we reanalyzed published single-cell RNA sequencing (scRNA-seq) studies of keloids, healthy skin, and normal scars to reliably determine the specific gene expression profile of keloid-specific Schwann cell types in more detail. We were able to confirm the presence of the repair-like, profibrotic Schwann cell type in the datasets of all three studies and identified a specific gene-set for these Schwann cells. In contrast to keloids, in normal scars, the number of Schwann cells was not increased, nor was their gene expression profile distinctly different from that of Schwann cells of normal skin. In addition, our bioinformatics analysis provided evidence for a role of transcription factors of the AP1, STAT, and KLF families, and members of the IER genes in the dedifferentiation process of keloidal Schwann cells. Together, our analysis strengthens the role of the profibrotic Schwann cell type in the formation of keloids. Knowledge of the exact gene expression profile of these Schwann cells will facilitate their identification in other organs and diseases.


Asunto(s)
Queloide , Humanos , Queloide/genética , Queloide/metabolismo , Queloide/patología , Células de Schwann/metabolismo , Células de Schwann/patología , Piel/metabolismo , Cicatrización de Heridas , Perfilación de la Expresión Génica
4.
Ophthalmol Ther ; 11(6): 2057-2066, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36066843

RESUMEN

INTRODUCTION: This study aimed to test and evaluate modified corneal cross-linking (CXL) protocols regarding improved treatment effects on the peripheral cornea in terms of tissue stability and cellular response. METHODS: Peripheral CXL (pCXL) was performed within a ring of 9-11 mm of 36 human donor corneas with variations in applied energy (5.4, 7.2, and 10 J/cm2) at 9 mW/cm2 irradiance. Each energy level was additionally modulated regarding the oxygen level surrounding the cornea during treatment (21%; 100%). Stress-strain tests with endpoints at 12% strain and collagenase A-assisted digestions to complete digestion were performed to evaluate the rigidity and resistance of treated and control tissue. Further, corneas were processed histologically via TUNEL assay and H&E staining to demonstrate the effects on stromal cells during treatment under varying CXL conditions. RESULTS: Increases in energy dosage achieved significant increases in resistance to stress in all variations except when comparing protocols A and B under normoxic conditions. Supplemental oxygen significantly increased rigidity in protocols B (p < 0.01) and C (p = 0.018). Hyperoxic conditions significantly increased resistance to digestion in all protocols. The number of DNA strand breaks in TUNEL assay staining showed significant increases in all increases in energy as well as with oxygen supplementation. CONCLUSIONS: Increases in energy and supplemental oxygen improved the effect of CXL, though endothelial safety could not be verified with confidence in high-fluence CXL with supplemental oxygen. Results suggest that CXL protocols using 7.2 J/cm2 with 100% O2 or 10 J/cm2 without supplemental oxygen prove most effective without anticipated risk of endothelial damage.

5.
Antioxidants (Basel) ; 11(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36009277

RESUMEN

Neutrophil extracellular trap (NET)-formation represents an important defence mechanism for the rapid clearance of infections. However, exaggerated NET formation has been shown to negatively affect tissue-regeneration after injury. As our previous studies revealed the strong tissue-protective and regenerative properties of the secretome of stressed peripheral blood mononuclear cells (PBMCsec), we here investigated the influence of PBMCsec on the formation of NETs. The effect of PBMCsec on NET formation was assessed ex vivo in ionomycin stimulated neutrophils derived from healthy donors using flow cytometry, image stream analysis, and quantification of released extracellular DNA. The effect of PBMCsec on molecular mechanisms involved in NET formation, including Ca-flux, protein kinase C activity, reactive oxygen species production, and protein arginine deiminase 4 activity, were analysed. Our results showed that PBMCsec significantly inhibited NET formation. Investigation of the different biological substance classes found in PBMCsec revealed only a partial reduction in NET formation, suggesting a synergistic effect. Mechanistically, PBMCsec treatment did not interfere with calcium signalling and PKC-activation, but exerted anti-oxidant activity, as evidenced by reduced levels of reactive oxygen species and upregulation of heme oxygenase 1 and hypoxia inducible-factor 1 in PBMCsec-treated neutrophils. In addition, PBMCsec strongly inhibited the activation of protein arginine deiminase 4 (PAD4), ultimately leading to the inhibition of NET formation. As therapeutics antagonizing excessive NET formation are not currently available, our study provides a promising novel treatment option for a variety of conditions resulting from exaggerated NET formation.

6.
Pharmaceutics ; 14(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36015226

RESUMEN

Tissue-regenerative properties have been attributed to secreted paracrine factors derived from stem cells and other cell types. In particular, the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) has been shown to possess high tissue-regenerative and proangiogenic capacities in a variety of preclinical studies. In light of future therapeutic intravenous applications of PBMCsec, we investigated the possible effects of PBMCsec on white blood cells and endothelial cells lining the vasculature. To identify changes in the transcriptional profile, whole blood was drawn from healthy individuals and stimulated with PBMCsec for 8 h ex vivo before further processing for single-cell RNA sequencing. PBMCsec significantly altered the gene signature of granulocytes (17 genes), T-cells (45 genes), B-cells (72 genes), and, most prominently, monocytes (322 genes). We detected a strong upregulation of several tissue-regenerative and proangiogenic cyto- and chemokines in monocytes, including VEGFA, CXCL1, and CXCL5. Intriguingly, inhibitors of endopeptidase activity, such as SERPINB2, were also strongly induced. Measurement of the trans-endothelial electrical resistance of primary human microvascular endothelial cells revealed a strong barrier-protective effect of PBMCsec after barrier disruption. Together, we show that PBMCsec induces angiogenic and proteolytic processes in the blood and is able to attenuate endothelial barrier damage. These regenerative properties suggest that systemic application of PBMCsec might be a promising novel strategy to restore damaged organs.

7.
EBioMedicine ; 81: 104093, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35671621

RESUMEN

BACKGROUND: IgE-mediated hypersensitivity is becoming increasingly prevalent and activation of mast cells and basophils represent key events in the pathophysiology of allergy. We have previously reported that the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) exerts beneficial anti-inflammatory effects. Yet, its ability to alleviate allergic symptoms has not been investigated so far. METHODS: Several experimental in vitro and in vivo models have been used in this basic research study. A murine ear swelling model was used to study the effects of PBMCsec on 48/80-induced mast cell degranulation in vivo. The transcriptional profile of murine mast cells was analysed by single cell RNA sequencing (scRNAseq). Mast cell activation was studied in vitro using primary skin mast cells. Basophils from individuals allergic to birch pollens were used to investigate basophile activation by allergens. Transcriptomic and lipidomic analyses were used to identify mRNA expression and lipid species present in PBMCsec, respectively. FINDINGS: Topical application of PBMCsec on mouse ears (C57BL/6) significantly reduced tissue swelling following intradermal injection of compound 48/80, an inducer of mast cell degranulation. Single cell RNA sequencing of PBMCsec-treated murine dermal mast cells (Balb/c) revealed a downregulation of genes involved in immune cell degranulation and Fc-receptor signalling. In addition, treatment of primary human dermal mast cells with PBMCsec strongly inhibited compound 48/80- and α-IgE-induced mediator release in vitro. Furthermore, PBMCsec remarkably attenuated allergen driven activation of basophils from allergic individuals. Transcriptomic analysis of these basophils showed that PBMCsec downregulated a distinct gene battery involved in immune cell degranulation and Fc-receptor signalling, corroborating results obtained from dermal mast cells. Finally, we identified the lipid fraction of PBMCsec as the major active ingredient involved in effector cell inhibition. INTERPRETATION: Collectively, our data demonstrate that PBMCsec is able to reduce activation of mast cells and basophils, encouraging further studies on the potential use of PBMCsec for treating allergy. FUNDING: Austrian Research Promotion Agency (852748 and 862068, 2015-2019), Vienna Business Agency (2343727, 2018-2020), Aposcience AG, Austrian Federal Ministry of Education, Science and Research (SPA06/055), Danube Allergy Research Cluster, Austrian Science Fund (I4437 and P32953).


Asunto(s)
Basófilos , Hipersensibilidad , Alérgenos , Animales , Humanos , Inmunoglobulina E , Recuento de Leucocitos , Leucocitos Mononucleares/metabolismo , Lípidos/farmacología , Mastocitos , Ratones , Ratones Endogámicos C57BL , Secretoma
8.
Br J Cancer ; 127(6): 1162-1171, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750748

RESUMEN

BACKGROUND: The spatial distribution of tumour-infiltrating lymphocytes (TILs) is a novel descriptor characterising the tumour immune microenvironment (TIME). The aim of our study was to assess whether a specific TIME of surgically resected thymic carcinoma (TC) can predict tumour invasiveness, recurrence or survival. METHODS: Digital microscopy was performed on 39 TCs immunohistochemically stained to investigate the activation of the immune checkpoint pathway (PD-L1/PD-1), along with density and spatial distribution of TILs phenotypes (CD3+, CD4+, CD8+, FOXP3+, CD56+). The impact of PD-L1 and TIL density considering the intratumoural (iTILs) and stromal (sTILs) distribution on pathological characteristics and clinical outcomes were analysed. RESULTS: In early TC stages, we observed a higher total density of CD3+ (p = 0.05) and CD8+ (p = 0.02) TILs. PD-L1 was expressed in 71.8% of TCs. In advanced TC stages, we observed a lower density of CD3+ (p = 0.04) and CD8+ (p = 0.01) iTILs compared to early stages. Serum concentrations of PD-L1 were significantly higher in TCs compared to healthy controls: 134.43 ± 18.51 vs. 82.01 ± 6.34 pg/ml (p = 0.001), respectively. High densities of stromal CD4+ TILs (54 vs. 32%, p = 0.043) and CD8+ TILs (65 vs. 17%, p = 0.048) were associated with improved freedom from recurrence (FFR) and cause-specific survival (CSS). High density of FoxP3+ TILs were associated with improved FFR (p = 0.03) and CSS (p = 0.003). DISCUSSION: Mapping TIL subpopulations complement the armamentarium for prognostication of TC outcomes. The improved outcome in patients with high density of TILs supports the use of immune checkpoint inhibitors in TC patients.


Asunto(s)
Timoma , Neoplasias del Timo , Antígeno B7-H1 , Linfocitos T CD8-positivos , Factores de Transcripción Forkhead , Humanos , Linfocitos Infiltrantes de Tumor , Pronóstico , Timoma/patología , Neoplasias del Timo/patología , Neoplasias del Timo/cirugía , Microambiente Tumoral
9.
Biology (Basel) ; 11(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35625405

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a vasoconstrictive disease characterized by elevated mean pulmonary arterial pressure (mPAP) at rest. Idiopathic pulmonary arterial hypertension (iPAH) and chronic thromboembolic pulmonary hypertension (CTEPH) represent two distinct subtypes of PH. Persisting PH leads to right ventricular (RV) hypertrophy, heart failure, and death. RV performance predicts survival and surgical interventions re-establishing physiological mPAP reverse cardiac remodeling. Nonetheless, a considerable number of PH patients are deemed inoperable. The underlying mechanism(s) governing cardiac regeneration, however, remain largely elusive. METHODS: In a longitudinal approach, we profiled the transcriptional landscapes of hypertrophic RVs and recovered hearts 3 months after surgery of iPAH and CTEPH patients. RESULTS: Genes associated with cellular responses to inflammatory stimuli and metal ions were downregulated, and cardiac muscle tissue development was induced in iPAH after recovery. In CTEPH patients, genes related to muscle cell development were decreased, and genes governing cardiac conduction were upregulated in RVs following regeneration. Intriguingly, early growth response 1 (EGR1), a profibrotic regulator, was identified as a major transcription factor of hypertrophic RVs in iPAH and CTEPH. A histological assessment confirmed our biocomputational results, and suggested a pivotal role for EGR1 in RV vasculopathy. CONCLUSION: Our findings improved our understanding of the molecular events driving reverse cardiac remodeling following surgery. EGR1 might represent a promising candidate for targeted therapy of PH patients not eligible for surgical treatment.

10.
Matrix Biol ; 108: 55-76, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278628

RESUMEN

Keloids are disfiguring, hypertrophic scars with yet poorly understood pathomechanisms, which could lead to severe functional impairments. Here we analyzed the characteristics of keloidal cells by single cell sequencing and discovered the presence of an abundant population of Schwann cells that persisted in the hypertrophic scar tissue after wound healing. In contrast to normal skin, keloidal Schwann cells show a unique, pro-fibrotic phenotype. Our data support the hypothesis that keloidal Schwann cells contribute to the formation of the extracellular matrix and are able to affect M2 polarization of macrophages. Indeed, we show that macrophages in keloids predominantly display a M2 polarization and produce factors that inhibit Schwann cell differentiation. This study suggests the contribution of a Schwann cell - macrophage cross-talk to the continuous expansion of keloids, and that targeting Schwann cells might represent an interesting novel treatment option for keloids.


Asunto(s)
Cicatriz Hipertrófica , Queloide , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/terapia , Matriz Extracelular/patología , Humanos , Queloide/patología , Células de Schwann/patología , Cicatrización de Heridas
11.
Sci Rep ; 12(1): 1654, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102298

RESUMEN

Burn injuries elicit a unique and dynamic stress response which can lead to burn injury progression. Though neutrophils represent crucial players in the burn-induced immunological events, the dynamic secretion pattern and systemic levels of neutrophil-derived factors have not been investigated in detail so far. Serum levels of neutrophil elastase (NE), myeloperoxidase (MPO), citrullinated histone H3 (CitH3), and complement factor C3a were quantified in burn victims over 4 weeks post injury. Furthermore, the potential association with mortality, degree of burn injury, and inhalation trauma was evaluated. In addition, leukocyte, platelet, neutrophil, and lymphocyte counts were assessed. Lastly, we analyzed the association of neutrophil-derived factors with clinical severity scoring systems. Serum levels of NE, MPO, CitH3, and C3a were remarkably elevated in burn victims compared to healthy controls. Leukocyte and neutrophil counts were significantly increased on admission day and day 1, while relative lymphocytes were decreased in the first 7 days post burn trauma. Though neutrophil-derived factors did not predict mortality, patients suffering from 3rd degree burn injuries displayed increased CitH3 and NE levels. Accordingly, CitH3 and NE were elevated in cases with higher abbreviated burn severity indices (ABSI). Taken together, our data suggest a role for neutrophil activation and NETosis in burn injuries and burn injury progression. Targeting exacerbated neutrophil activation might represent a new therapeutic option for severe cases of burn injury.


Asunto(s)
Quemaduras/inmunología , Activación Neutrófila , Neutrófilos/inmunología , Adulto , Anciano , Biomarcadores/sangre , Quemaduras/sangre , Quemaduras/diagnóstico , Quemaduras/mortalidad , Estudios de Casos y Controles , Citrulinación , Complemento C3/metabolismo , Femenino , Histonas/sangre , Humanos , Recuento de Leucocitos , Elastasa de Leucocito/sangre , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Peroxidasa/sangre , Valor Predictivo de las Pruebas , Pronóstico , Procesamiento Proteico-Postraduccional , Índice de Severidad de la Enfermedad , Factores de Tiempo , Adulto Joven
12.
Biology (Basel) ; 11(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053115

RESUMEN

Pulmonary hypertension (PH) is characterized by increased pulmonary arterial pressure caused by the accumulation of mesenchymal-like cells in the pulmonary vasculature. PH can lead to right ventricular hypertrophy (RVH) and, ultimately, heart failure and death. In PH etiology, endothelial-to-mesenchymal transition (EndMT) has emerged as a critical process governing the conversion of endothelial cells into mesenchymal cells, and S100A4, EGF, and EGFR are implicated in EndMT. However, a potential role of S100A4, EGF, and EGFR in PH has to date not been elucidated. We therefore quantified S100A4, EGF, and EGFR in patients suffering from chronic thromboembolic pulmonary hypertension (CTEPH) and idiopathic pulmonary arterial hypertension (iPAH). To determine specificity for unilateral heart disease, the EndMT biomarker signature was further compared between PH patients presenting with RVH and patients suffering from aortic valve stenosis (AVS) with left ventricular hypertrophy. Reduced S100A4 concentrations were found in CTEPH and iPAH patients with RVH. Systemic EGF was increased in CTEPH but not in iPAH, while AVS patients displayed slightly diminished EGF levels. EGFR was downregulated in all patient groups when compared to healthy controls. Longitudinal data analysis revealed no effect of surgical therapies on EndMT markers. Pulmonary thrombo-endarterectomized samples were devoid of S100A4, while S100A4 tissue expression positively correlated with higher grades of Heath-Edwards histopathological lesions of iPAH-derived lung tissue. Histologically, EGFR was not detectable in CTEPH lungs or in iPAH lesions. Together, our data suggest an intricate role for S100A4 and EGF/EGFR in PH with right heart pathology.

13.
Biology (Basel) ; 11(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35053121

RESUMEN

Acute myocardial infarction (AMI) is a result of cardiac non-perfusion and leads to cardiomyocyte necrosis, inflammation, and compromised cardiac performance. Here, we showed that the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) improved heart function in a porcine AMI model and displayed beneficial long- and short-term effects. As an AMI is known to strongly affect gene regulation of the ischemia non-affected heart muscle and distal organs, we employed a transcriptomics approach to further study the immediate molecular events orchestrated using the PBMCsec in myocardium, liver, and spleen 24 h post ischemia. In the infarcted area, the PBMCsec mainly induced genes that were essential for cardiomyocyte function and simultaneously downregulated pro-inflammatory genes. Interestingly, genes associated with pro-inflammatory processes were activated in the transition zone, while being downregulated in the remote zone. In the liver, we observed a pronounced inhibition of immune responses using the PBMCsec, while genes involved in urea and tricarboxylic cycles were induced. The spleen displayed elevated lipid metabolism and reduced immunological processes. Together, our study suggested several types of pharmacodynamics by which the PBMCsec conferred immediate cardioprotection. Furthermore, our data supported the assumption that an AMI significantly affects distal organs, suggesting that a holistic treatment of an AMI, as achieved by PBMCsec, might be highly beneficial.

14.
Eur J Clin Invest ; 52(5): e13736, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34932232

RESUMEN

BACKGROUND: The present population-based cohort study investigated long-term mortality after surgical aortic valve replacement (AVR) with bioprosthetic (B) or mechanical aortic valve prostheses (M) in a European social welfare state. METHODS: We analysed patient data from health insurance records covering 98% of the Austrian population between 2010 and 2018. Subsequent patient-level record linkage with national health data provided patient characteristics and clinical outcomes. Further reoperation, myocardial infarction, heart failure and stroke were evaluated as secondary outcomes. RESULTS: A total of 13,993 patients were analysed and the following age groups were examined separately: <50 years (727 patients: 57.77% M, 42.23% B), 50-65 years (2612 patients: 26.88% M, 73.12% B) and >65 years (10,654 patients: 1.26% M, 98.74% B). Multivariable Cox regression revealed that the use of B-AVR was significantly associated with higher mortality in patients aged 50-65 years compared to M-AVR (HR = 1.676 [1.289-2.181], p < 0.001). B-AVR also performed worse in a competing risk analysis regarding reoperation (HR = 3.483 [1.445-8.396], p = 0.005) and myocardial infarction (HR = 2.868 [1.255-6.555], p = 0.012). However, the risk of developing heart failure and stroke did not differ significantly after AVR in any age group. CONCLUSIONS: Patients aged 50-65 years who underwent M-AVR had better long-term survival, and a lower risk of reoperation and myocardial infarction. Even though anticoagulation is crucial in patients with M-AVR, we did not observe significantly increased stroke rates in patients with M-AVR. This evident survival benefit in recipients of mechanical aortic valve prostheses aged <65 years critically questions current guideline recommendations.


Asunto(s)
Bioprótesis , Insuficiencia Cardíaca , Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Infarto del Miocardio , Accidente Cerebrovascular , Válvula Aórtica/cirugía , Estudios de Cohortes , Insuficiencia Cardíaca/etiología , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Humanos , Infarto del Miocardio/etiología , Estudios Retrospectivos , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Resultado del Tratamiento
15.
Biology (Basel) ; 10(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34827178

RESUMEN

Although, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents one of the biggest challenges in the world today, the exact immunopathogenic mechanism that leads to severe or critical Coronavirus Disease 2019 (COVID-19) has remained incompletely understood. Several studies have indicated that high systemic plasma levels of inflammatory cytokines result in the so-called "cytokine storm", with subsequent development of microthrombosis, disseminated intravascular coagulation, and multiorgan-failure. Therefore, we reasoned those elevated inflammatory molecules might act as prognostic factors. Here, we analyzed 245 serum samples of patients with COVID-19, collected at hospital admission. We assessed the levels of heat shock protein 27 (HSP27), soluble suppressor of tumorigenicity-2 (sST2) and 20S proteasome at hospital admission and explored their associations with overall-, 30-, 60-, 90-day- and in-hospital mortality. Moreover, we investigated their association with the risk of ventilation. We demonstrated that increased serum sST2 was uni- and multivariably associated with all endpoints. Furthermore, we also identified 20S proteasome as independent prognostic factor for in-hospital mortality (sST2, AUC = 0.73; HSP27, AUC = 0.59; 20S proteasome = 0.67). Elevated sST2, HSP27, and 20S proteasome levels at hospital admission were univariably associated with higher risk of invasive ventilation (OR = 1.8; p < 0.001; OR = 1.1; p = 0.04; OR = 1.03, p = 0.03, respectively). These findings could help to identify high-risk patients early in the course of COVID-19.

16.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769061

RESUMEN

Sebaceous glands are adnexal structures, which critically contribute to skin homeostasis and the establishment of a functional epidermal barrier. Sebocytes, the main cell population found within the sebaceous glands, are highly specialized lipid-producing cells. Sebaceous gland-resembling tissue structures are also found in male rodents in the form of preputial glands. Similar to sebaceous glands, they are composed of lipid-specialized sebocytes. Due to a lack of adequate organ culture models for skin sebaceous glands and the fact that preputial glands are much larger and easier to handle, previous studies used preputial glands as a model for skin sebaceous glands. Here, we compared both types of sebocytes, using a single-cell RNA sequencing approach, to unravel potential similarities and differences between the two sebocyte populations. In spite of common gene expression patterns due to general lipid-producing properties, we found significant differences in the expression levels of genes encoding enzymes involved in the biogenesis of specialized lipid classes. Specifically, genes critically involved in the mevalonate pathway, including squalene synthase, as well as the sphingolipid salvage pathway, such as ceramide synthase, (acid) sphingomyelinase or acid and alkaline ceramidases, were significantly less expressed by preputial gland sebocytes. Together, our data revealed tissue-specific sebocyte populations, indicating major developmental, functional as well as biosynthetic differences between both glands. The use of preputial glands as a surrogate model to study skin sebaceous glands is therefore limited, and major differences between both glands need to be carefully considered before planning an experiment.


Asunto(s)
Metabolismo de los Lípidos/genética , Lípidos/genética , Glándulas Sebáceas/metabolismo , Piel/metabolismo , Transcripción Genética/genética , Animales , Diferenciación Celular/genética , Epidermis/metabolismo , Células Epiteliales/metabolismo , Glándulas Exocrinas/metabolismo , Prepucio/metabolismo , Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/genética
17.
Nat Commun ; 12(1): 6242, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716325

RESUMEN

Despite recent advances in understanding skin scarring, mechanisms triggering hypertrophic scar formation are still poorly understood. In the present study, we investigate mature human hypertrophic scars and developing scars in mice at single cell resolution. Compared to normal skin, we find significant differences in gene expression in most cell types present in scar tissue. Fibroblasts show the most prominent alterations in gene expression, displaying a distinct fibrotic signature. By comparing genes upregulated in murine fibroblasts during scar development with genes highly expressed in mature human hypertrophic scars, we identify a group of serine proteases, tentatively involved in scar formation. Two of them, dipeptidyl-peptidase 4 (DPP4) and urokinase (PLAU), are further analyzed in functional assays, revealing a role in TGFß1-mediated myofibroblast differentiation and over-production of components of the extracellular matrix in vitro. Topical treatment with inhibitors of DPP4 and PLAU during scar formation in vivo shows anti-fibrotic activity and improvement of scar quality, most prominently after application of the PLAU inhibitor BC-11. In this study, we delineate the genetic landscape of hypertrophic scars and present insights into mechanisms involved in hypertrophic scar formation. Our data suggest the use of serine protease inhibitors for the treatment of skin fibrosis.


Asunto(s)
Cicatriz/patología , Dipeptidil Peptidasa 4/genética , Proteínas de la Membrana/genética , Animales , Diferenciación Celular/efectos de los fármacos , Cicatriz/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Femenino , Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Miofibroblastos/efectos de los fármacos , Miofibroblastos/fisiología , Análisis de la Célula Individual , Fosfato de Sitagliptina/farmacología , Factor de Crecimiento Transformador beta1/farmacología
18.
Mol Ther Methods Clin Dev ; 21: 14-27, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33768126

RESUMEN

Cell-free secretomes represent a promising new therapeutic avenue in regenerative medicine, and γ-irradiation of human peripheral blood mononuclear cells (PBMCs) has been shown to promote the release of paracrine factors with high regenerative potential. Recently, the use of alternative irradiation sources, such as artificially generated ß- or electron-irradiation, is encouraged by authorities. Since the effect of the less hazardous electron-radiation on the production and functions of paracrine factors has not been tested so far, we compared the effects of γ- and electron-irradiation on PBMCs and determined the efficacy of both radiation sources for producing regenerative secretomes. Exposure to 60 Gy γ-rays from a radioactive nuclide and 60 Gy electron-irradiation provided by a linear accelerator comparably induced cell death and DNA damage. The transcriptional landscapes of PBMCs exposed to either radiation source shared a high degree of similarity. Secretion patterns of proteins, lipids, and extracellular vesicles displayed similar profiles after γ- and electron-irradiation. Lastly, we detected comparable biological activities in functional assays reflecting the regenerative potential of the secretomes. Taken together, we were able to demonstrate that electron-irradiation is an effective, alternative radiation source for producing therapeutic, cell-free secretomes. Our study paves the way for future clinical trials employing secretomes generated with electron-irradiation in tissue-regenerative medicine.

19.
Sci Rep ; 11(1): 6799, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762606

RESUMEN

Chronic Lung Allograft Dysfunction (CLAD), manifesting as Bronchiolitis Obliterans Syndrome (BOS) or Restrictive Allograft Syndrome (RAS), is the main reason for adverse long-term outcome after Lung Transplantation (LTX). Until now, no specific biomarkers exist to differentiate between CLAD phenotypes. Therefore, we sought to find suitable cytokines to distinguish between BOS, RAS and Azithromycin Responsive Allograft Dysfunction (ARAD); and reveal potential similarities or differences to end-stage fibrotic diseases. We observed significantly increased Lipocalin-2 serum concentrations in RAS compared to BOS patients. In addition, in RAS patients immunohistochemistry revealed Lipocalin-2 expression in bronchial epithelium and alveolar walls. Patients with ARAD showed significantly lower Activin-A serum concentrations compared to Stable-LTX and BOS patients. Further, increased serum concentrations of Lipocalin-2 and Activin-A were predictors of worse freedom-from-CLAD in Stable-LTX patients. These biomarkers serve as promising serum biomarkers for CLAD prediction and seem suitable for implementation in clinical practice.


Asunto(s)
Azitromicina/efectos adversos , Biomarcadores/sangre , Trasplante de Pulmón/efectos adversos , Disfunción Primaria del Injerto/etiología , Activinas/sangre , Adulto , Anciano , Azitromicina/uso terapéutico , Bronquios/metabolismo , Bronquiolitis Obliterante/etiología , Citocinas/sangre , Femenino , Humanos , Lipocalina 2/sangre , Masculino , Metaloproteinasa 9 de la Matriz/sangre , Persona de Mediana Edad , Fenotipo , Trasplante Homólogo/efectos adversos
20.
Biomedicines ; 9(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652877

RESUMEN

Ichthyoses comprise a broad spectrum of keratinization disorders due to hereditary defects of cornification. Until now, mutations in more than 50 genes, mostly coding for structural proteins involved in epidermal barrier formation, have been identified as causes for different types of these keratinization disorders. However, due to the high heterogeneity and difficulties in the establishment of valid experimental models, research in this field remains challenging and translation of novel findings to clinical practice is difficult. In this review, we provide an overview of existing models to study hereditary cornification defects with focus on ichthyoses and palmoplantar keratodermas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA