Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Proc Natl Acad Sci U S A ; 120(40): e2305195120, 2023 10 03.
Article En | MEDLINE | ID: mdl-37751557

Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.


Coinfection , Ostreidae , Animals , Humans , Ecosystem , Biological Assay , Cooperative Behavior
2.
J Proteomics ; 232: 104044, 2021 02 10.
Article En | MEDLINE | ID: mdl-33161166

Thermococcus gammatolerans EJ3 is an extremophile archaeon which was revealed as one of the most radioresistant organisms known on Earth, withstanding up to 30 kGy gamma-ray radiations. While its theoretical proteome is rather small, T. gammatolerans may enhance its toolbox by post-translational modification of its proteins. Here, we explored its extent of Nε-acetylation of lysines. For this, we immunopurified with two acetylated-lysine antibodies the acetylated peptides resulting from a proteolysis of soluble proteins with trypsin. The comparison of acetylated proteomes of two archaea highlights some common acetylation patterns but only 4 out of 26 orthologous proteins found to be acetylated in both species, are acetylated on the same lysine site. We evidenced that histone B is acetylated in T. gammatolerans at least at two different sites (K27 and K36), and a peptide common at the C-terminus of histones A and B is also acetylated. We verified that acetylation of histones is a common trait among Thermococcales after recording data on Thermococcus kodakaraensis histones and identifying three acetylated sites. This discovery reinforces the strong evolutionary link between Archaea and Eukaryotes and should be an incentive for further investigation on the extent and role of acetylation of histones in Archaea. SIGNIFICANCE: Acetylation is an important post-translational modification of proteins that has been extensively described in Eukaryotes, and more recently in Bacteria. Here, we report for the first time ever that histones in Archaea are also modified by acetylation after a systematic survey of acetylated peptides in Thermococcus gammatolerans. Structural models of histones A and B indicates that acetylation of the identified modified residues may play an important role in histone assembly and/or interaction with DNA. The in-depth protein acetylome landscape in T. gammatolerans includes at least 181 unique protein sequences, some of them being modified on numerous residues. Proteins involved in metabolic processes, information storage and processing mechanisms are over-represented categories in this dataset, highlighting the ancient role of this protein post-translational modification in primitive cells.


Proteome , Thermococcus , Acetylation , Histones , Lysine/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Thermococcus/metabolism
3.
Proc Natl Acad Sci U S A ; 116(28): 14238-14247, 2019 07 09.
Article En | MEDLINE | ID: mdl-31221761

Vibrio species cause infectious diseases in humans and animals, but they can also live as commensals within their host tissues. How Vibrio subverts the host defenses to mount a successful infection remains poorly understood, and this knowledge is critical for predicting and managing disease. Here, we have investigated the cellular and molecular mechanisms underpinning infection and colonization of 2 virulent Vibrio species in an ecologically relevant host model, oyster, to study interactions with marine Vibrio species. All Vibrio strains were recognized by the immune system, but only nonvirulent strains were controlled. We showed that virulent strains were cytotoxic to hemocytes, oyster immune cells. By analyzing host and bacterial transcriptional responses to infection, together with Vibrio gene knock-outs, we discovered that Vibrio crassostreae and Vibrio tasmaniensis use distinct mechanisms to cause hemocyte lysis. Whereas V. crassostreae cytotoxicity is dependent on a direct contact with hemocytes and requires an ancestral gene encoding a protein of unknown function, r5.7, V. tasmaniensis cytotoxicity is dependent on phagocytosis and requires intracellular secretion of T6SS effectors. We conclude that proliferation of commensal vibrios is controlled by the host immune system, preventing systemic infections in oysters, whereas the successful infection of virulent strains relies on Vibrio species-specific molecular determinants that converge to compromise host immune cell function, allowing evasion of the host immune system.


Host-Pathogen Interactions/genetics , Ostreidae/microbiology , Vibrio Infections/genetics , Vibrio/genetics , Animals , Cytoplasm/genetics , Cytoplasm/microbiology , Hemocytes/microbiology , Phagocytosis/genetics , Species Specificity , Vibrio/pathogenicity , Vibrio Infections/pathology
4.
Chem Res Toxicol ; 29(11): 1796-1809, 2016 11 21.
Article En | MEDLINE | ID: mdl-27676238

The hyperthermophilic archaeon Thermococcus gammatolerans can resist huge doses of γ-irradiation, up to 5.0 kGy, without loss of viability. The potential to withstand such harsh conditions is probably due to complementary passive and active mechanisms, including repair of damaged chromosomes. In this work, we documented the formation and repair of oxidative DNA lesions in T. gammatolerans. The basal level of the oxidized nucleoside, 8-oxo-2'-deoxyguanosine (8-oxo-dGuo), was established at 9.2 (± 0.9) 8-oxo-dGuo per 106 nucleosides, a higher level than those usually measured in eukaryotic cells or bacteria. A significant increase in oxidative damage, i.e., up to 24.2 (± 8.0) 8-oxo-dGuo/106 nucleosides, was measured for T. gammatolerans exposed to a 5.0 kGy dose of γ-rays. Surprisingly, the yield of radiation-induced modifications was lower than those previously observed for human cells exposed to doses corresponding to a few grays. One hour after irradiation, 8-oxo-dGuo levels were significantly reduced, indicating an efficient repair. Two putative base excision repair (BER) enzymes, TGAM_1277 and TGAM_1653, were demonstrated both by proteomics and transcriptomics to be present in the cells without exposure to ionizing radiation. Their transcripts were moderately upregulated after gamma irradiation. After heterologous production and purification of these enzymes, biochemical assays based on electrophoresis and MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry indicated that both have a ß-elimination cleavage activity. TGAM_1653 repairs 8-oxo-dGuo, whereas TGAM_1277 is also able to remove lesions affecting pyrimidines (1-[2-deoxy-ß-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-ß-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd)). This work showed that in normal growth conditions or in the presence of a strong oxidative stress, T. gammatolerans has the potential to rapidly reduce the extent of DNA oxidation, with at least these two BER enzymes as bodyguards with distinct substrate ranges.


DNA Damage , DNA Repair , DNA, Archaeal/chemistry , Radiation Tolerance , Thermococcus/genetics , Oxidation-Reduction , Proteomics , Transcriptome
5.
Proteomics ; 15(1): 114-23, 2015 Jan.
Article En | MEDLINE | ID: mdl-25359407

ORFans are hypothetical proteins lacking any significant sequence similarity with other proteins. Here, we highlighted by quantitative proteomics the TGAM_1934 ORFan from the hyperradioresistant Thermococcus gammatolerans archaeon as one of the most abundant hypothetical proteins. This protein has been selected as a priority target for structure determination on the basis of its abundance in three cellular conditions. Its solution structure has been determined using multidimensional heteronuclear NMR spectroscopy. TGAM_1934 displays an original fold, although sharing some similarities with the 3D structure of the bacterial ortholog of frataxin, CyaY, a protein conserved in bacteria and eukaryotes and involved in iron-sulfur cluster biogenesis. These results highlight the potential of structural proteomics in prioritizing ORFan targets for structure determination based on quantitative proteomics data. The proteomic data and structure coordinates have been deposited to the ProteomeXchange with identifier PXD000402 (http://proteomecentral.proteomexchange.org/dataset/PXD000402) and Protein Data Bank under the accession number 2mcf, respectively.


Archaeal Proteins/chemistry , Thermococcus/chemistry , Amino Acid Sequence , Iron-Binding Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Proteomics , Frataxin
6.
FEBS Lett ; 587(9): 1346-52, 2013 May 02.
Article En | MEDLINE | ID: mdl-23499935

A gene (MoPRD1), related to xylose reductases, was identified in Magnaporthe oryzae. Recombinant MoPRD1 displays its highest specific reductase activity toward L-arabinose and D-xylose. Km and Vmax values using L-arabinose and D-xylose are similar. MoPRD1 was highly overexpressed 2-8h after transfer of mycelium to D-xylose or L-arabinose, compared to D-glucose. Therefore, we conclude that MoPDR1 is a novel pentose reductase, which combines the activities and expression patterns of fungal L-arabinose and D-xylose reductases. Phylogenetic analysis shows that PRD1 defines a novel family of pentose reductases related to fungal D-xylose reductases, but distinct from fungal L-arabinose reductases. The presence of PRD1, L-arabinose and D-xylose reductases encoding genes in a given species is variable and likely related to their life style.


Magnaporthe/metabolism , Oxidoreductases/metabolism , Pentoses/metabolism , Amino Acid Sequence , Gene Expression Regulation, Fungal , Magnaporthe/enzymology , Magnaporthe/genetics , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Phylogeny , Species Specificity
7.
PLoS One ; 7(7): e41935, 2012.
Article En | MEDLINE | ID: mdl-22848664

Thermococcus gammatolerans, the most radioresistant archaeon known to date, is an anaerobic and hyperthermophilic sulfur-reducing organism living in deep-sea hydrothermal vents. Knowledge of mechanisms underlying archaeal metal tolerance in such metal-rich ecosystem is still poorly documented. We showed that T. gammatolerans exhibits high resistance to cadmium (Cd), cobalt (Co) and zinc (Zn), a weaker tolerance to nickel (Ni), copper (Cu) and arsenate (AsO(4)) and that cells exposed to 1 mM Cd exhibit a cellular Cd concentration of 67 µM. A time-dependent transcriptomic analysis using microarrays was performed at a non-toxic (100 µM) and a toxic (1 mM) Cd dose. The reliability of microarray data was strengthened by real time RT-PCR validations. Altogether, 114 Cd responsive genes were revealed and a substantial subset of genes is related to metal homeostasis, drug detoxification, re-oxidization of cofactors and ATP production. This first genome-wide expression profiling study of archaeal cells challenged with Cd showed that T. gammatolerans withstands induced stress through pathways observed in both prokaryotes and eukaryotes but also through new and original strategies. T. gammatolerans cells challenged with 1 mM Cd basically promote: 1) the induction of several transporter/permease encoding genes, probably to detoxify the cell; 2) the upregulation of Fe transporters encoding genes to likely compensate Cd damages in iron-containing proteins; 3) the induction of membrane-bound hydrogenase (Mbh) and membrane-bound hydrogenlyase (Mhy2) subunits encoding genes involved in recycling reduced cofactors and/or in proton translocation for energy production. By contrast to other organisms, redox homeostasis genes appear constitutively expressed and only a few genes encoding DNA repair proteins are regulated. We compared the expression of 27 Cd responsive genes in other stress conditions (Zn, Ni, heat shock, γ-rays), and showed that the Cd transcriptional pattern is comparable to other metal stress transcriptional responses (Cd, Zn, Ni) but not to a general stress response.


Cadmium/pharmacology , Genome, Archaeal/genetics , Thermococcus/drug effects , Thermococcus/genetics , Transcription, Genetic/drug effects , Transcriptome/drug effects , Adenosine Triphosphate/biosynthesis , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , DNA Repair/drug effects , DNA Repair/genetics , Drug Resistance/genetics , Homeostasis/drug effects , Homeostasis/genetics , Iron/metabolism , Microbial Sensitivity Tests , Molecular Sequence Annotation , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics , Thermococcus/enzymology , Thermococcus/physiology
8.
Genome Biol ; 10(6): R70, 2009.
Article En | MEDLINE | ID: mdl-19558674

BACKGROUND: Thermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys. It is one of the most radioresistant organisms known amongst the Archaea. We report the determination and annotation of its complete genome sequence, its comparison with other Thermococcales genomes, and a proteomic analysis. RESULTS: T. gammatolerans has a circular chromosome of 2.045 Mbp without any extra-chromosomal elements, coding for 2,157 proteins. A thorough comparative genomics analysis revealed important but unsuspected genome plasticity differences between sequenced Thermococcus and Pyrococcus species that could not be attributed to the presence of specific mobile elements. Two virus-related regions, tgv1 and tgv2, are the only mobile elements identified in this genome. A proteogenome analysis was performed by a shotgun liquid chromatography-tandem mass spectrometry approach, allowing the identification of 10,931 unique peptides corresponding to 951 proteins. This information concurrently validates the accuracy of the genome annotation. Semi-quantification of proteins by spectral count was done on exponential- and stationary-phase cells. Insights into general catabolism, hydrogenase complexes, detoxification systems, and the DNA repair toolbox of this archaeon are revealed through this genome and proteome analysis. CONCLUSIONS: This work is the first archaeal proteome investigation done at the stage of primary genome annotation. This archaeon is shown to use a large variety of metabolic pathways even under a rich medium growth condition. This proteogenomic study also indicates that the high radiotolerance of T. gammatolerans is probably due to proteins that remain to be characterized rather than a larger arsenal of known DNA repair enzymes.


Genome, Archaeal/genetics , Proteomics , Radiation Tolerance/genetics , Thermococcus/genetics , Archaeal Proteins/metabolism , Biological Transport/radiation effects , Cell Membrane/enzymology , Cell Membrane/radiation effects , Chromosomes/metabolism , Codon, Initiator/genetics , DNA Repair/radiation effects , DNA Transposable Elements/genetics , Gamma Rays , Hydrogenase/metabolism , Mass Spectrometry , Microbial Viability/radiation effects , Protein Biosynthesis/genetics , Protein Biosynthesis/radiation effects , Protein Processing, Post-Translational/radiation effects , Proteome/genetics , Radiation Tolerance/radiation effects , Reproducibility of Results , Sequence Analysis, DNA , Thermococcus/growth & development , Thermococcus/metabolism , Thermococcus/virology
9.
Mol Microbiol ; 52(5): 1413-25, 2004 Jun.
Article En | MEDLINE | ID: mdl-15165243

The covalently linked cell wall protein Ccw12p of Saccharomyces cerevisiae is a GPI-anchored protein (V. Mrsa et al., 1999, J Bacteriol 181: 3076-3086). Although only 121 amino acids long, the haemagglutinin-tagged protein released by laminarinase from the cell wall possesses an apparent molecular mass of > 300 kDa. A membrane-bound form with an apparent molecular mass of 58 kDa is highly O- and N-glycosylated and contains the GPI anchor. With a half-life of 2 min, the membrane form is transformed to the > 300 kDa form. The deletion mutant ccw12Delta grows slower than the wild type, is highly sensitive to Calcofluor white and contains 2.5 times more chitin. Further, compared with wild-type yeast, significantly more proteins are released from intact cells when treated with dithiothreitol. Interestingly, these defects become less pronounced when further GPI-anchored cell wall proteins are deleted. Mutant DeltaGPI (simultaneous deletion of CCW12, CCW13/DAN1, CCW14, TIP1 and CWP1) is similar in many respects to wild-type yeast. To find out how the cell wall is stabilized in mutant DeltaGPI, a genome-wide transcription analysis was performed. Of 159 significantly regulated genes, 14 encode either known or suspected cell wall-associated proteins. Analysis of genes affected in transcription revealed that SED1 and SRL1 in particular are required to reconstruct cell wall stability in the absence of multiple GPI-anchored mannoproteins.


Cell Wall/metabolism , Gene Expression Profiling , Glycosylphosphatidylinositols/metabolism , Membrane Glycoproteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell Wall/chemistry , Cell Wall/ultrastructure , Chitin/chemistry , Gene Expression Regulation, Fungal , Membrane Glycoproteins/genetics , Mutation , Oligonucleotide Array Sequence Analysis , Phenotype , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic
10.
Mol Microbiol ; 49(1): 23-35, 2003 Jul.
Article En | MEDLINE | ID: mdl-12823808

In budding yeast, PKC1 plays an essential role in cell integrity and proliferation through a linear MAP (Mitogen Activated Protein) kinase phosphorylation cascade, which ends up with the activation of the Slt2-MAP kinase by dual phosphorylation on two conserved threonine and tyrosine residues. In this phosphorylated form, Slt2p kinase activates by phosphorylation at least two known downstream targets: Rlm1p, which is implicated in the expression of cell wall-related genes, and SBF, required for transcription activation of cell cycle-regulated genes at the G1 to S transition. In this paper, we demonstrate by two-hybrid, in vitro immunoprecipitation and tandem affinity purification (TAP) methods that Knr4p physically interacts with Slt2p. Moreover, we show that the absence of Knr4p alters proper signalling of Slt2p to its two known downstream targets. In a knr4 null mutant, the SLT2-dependent activation of Rlm1p is strongly reduced and the transcriptional activity of Rlm1p is decreased, although the phosphorylated form of Slt2p is more abundant than in wild-type cells. On the contrary, SBF is abnormally activated in this mutant, as shown by a more abundant phosphorylated form of Swi6p, by higher beta-galactosidase levels from a SCB-lacZ gene fusion, and by deregulation of the cyclic behaviour of several cell cycle-regulated genes. These results, taken together with our recent finding that Bck2p requires Knr4p to activate additively with Cln3-Cdc28p SBF target genes, lead to a model in which Knr4p is involved in co-ordinating the Slt2p-mediated cell wall integrity pathway with progression of the cell cycle.


Cell Wall/metabolism , Mitogen-Activated Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Signal Transduction/physiology , Animals , Cell Cycle/physiology , Genes, Reporter , MADS Domain Proteins , Macromolecular Substances , Mitogen-Activated Protein Kinases/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Transcriptional Activation , Two-Hybrid System Techniques
11.
J Biol Chem ; 278(22): 20345-57, 2003 May 30.
Article En | MEDLINE | ID: mdl-12644457

Perturbations of the yeast cell wall trigger a repair mechanism that reconfigures its molecular structure to preserve cell integrity. To investigate this mechanism, we compared the global gene expression in five mutant strains, each bearing a mutation (i.e. fks1, kre6, mnn9, gas1, and knr4 mutants) that affects in a different manner the cell wall construction. Altogether, 300 responsive genes were kept based on high stringency criteria during data processing. Functional classification of these differentially expressed genes showed a substantial subset of induced genes involved in cell wall construction and an enrichment of metabolic, energy generation, and cell defense categories, whereas families of genes belonging to transcription, protein synthesis, and cellular growth were underrepresented. Clustering methods isolated a single group of approximately 80 up-regulated genes that could be considered as the stereotypical transcriptional response of the cell wall compensatory mechanism. The in silico analysis of the DNA upstream region of these co-regulated genes revealed pairwise combinations of DNA-binding sites for transcriptional factors implicated in stress and heat shock responses (Msn2/4p and Hsf1p) with Rlm1p and Swi4p, two PKC1-regulated transcription factors involved in the activation genes related to cell wall biogenesis and G1/S transition. Moreover, this computational analysis also uncovered the 6-bp 5'-AGCCTC-3' CDRE (calcineurin-dependent response element) motif in 40% of the co-regulated genes. This motif was recently shown to be the DNA binding site for Crz1p, the major effector of calcineurin-regulated gene expression in yeast. Taken altogether, the data presented here lead to the conclusion that the cell wall compensatory mechanism, as triggered by cell wall mutations, integrates three major regulatory systems: namely the PKC1-SLT2 mitogen-activated protein kinase-signaling module, the "global stress" response mediated by Msn2/4p, and the Ca2+/calcineurin-dependent pathway. The relative importance of these regulatory systems in the cell wall compensatory mechanism is discussed.


Cell Wall/genetics , Genome, Fungal , Mutation , Saccharomyces cerevisiae/genetics , Base Sequence , Calcineurin/metabolism , Calcium/metabolism , DNA Primers , DNA, Complementary , Gene Expression Profiling , Saccharomyces cerevisiae/cytology , Signal Transduction
12.
Eur J Biochem ; 269(6): 1697-707, 2002 Mar.
Article En | MEDLINE | ID: mdl-11895440

Cell-wall damage caused by mutations of cell-wall-related genes triggers a compensatory mechanism which eventually results in hyperaccumulation of chitin reaching 20% of the cell-wall dry mass. We show that activation of chitin synthesis is accompanied by a rise, from 1.3-fold to 3.5-fold according to the gene mutation, in the expression of most of the genes encoding enzymes of the chitin metabolic pathways. Evidence that GFA1, which encodes glutamine-fructose-6-Phosphate amidotransferase (Gfa1p), the first committed enzyme of this pathway, plays a major role in this process was as follows. Activation of chitin synthesis in the cell-wall mutants correlated with activation of GFA1 and with a proportional increase in Gfa1p activity. Overexpression of GFA1 caused an approximately threefold increase in chitin in the transformed cells, whereas chitin content was barely affected by the joint overexpression of CHS3 and CHS7. Introduction of a gfa1-97 allele mutation in the cell-wall-defective gas1Delta mutant or cultivation of this mutant in a hyperosmotic medium resulted in reduction in chitin synthesis that was proportional to the decrease in Gfa1p activity. Finally, the stimulation of chitin production was also accompanied by an increase in pools of fructose 6-Phosphate, a substrate of Gfa1p. In quantitative terms, we estimated the flux-coefficient control of Gfa1p to be in the range of 0.90, and found that regulation of the chitin metabolic pathway was mainly hierarchical, i.e. dominated by regulation of the amount of newly synthesized GFA1 protein. In the search for the mechanism by which GFA1 is activated in response to cell-wall perturbations, we could only show that neither MCM1 nor RLM1, which encode two transcriptional factors of the MADS box family that are required for expression of cell-cycle and cell-wall-related genes, was involved in this process.


Cell Wall/metabolism , Chitin/biosynthesis , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Saccharomyces cerevisiae/metabolism , Carbohydrate Sequence , Chitin/chemistry , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Genes, Fungal , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Molecular Sequence Data , Phenotype , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Transcriptional Activation
...