Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
2.
Cancers (Basel) ; 15(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37345068

RESUMEN

Acute myeloid leukemia (AML) with nucleophosmin (NPM1) genetic mutations is the most common subtype in adult patients. Refractory or relapsed disease in unfit patients or after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a poor prognosis. NPM1-mutated protein, stably expressed on tumor cells but not on normal tissues, may serve as an ideal target for NPM1-mutated AML immunotherapy. The study aim was to investigate the feasibility of producing mutated-NPM1-specific cytotoxic T cells (CTLs) suitable for somatic cell therapy to prevent or treat hematologic relapse in patients with NPM1-mutated AML. T cells were expanded or primed from patient or donor peripheral blood mononuclear cells by NPM1-mutated protein-derived peptides, and tested for leukemia antigen-targeted cytotoxic activity, cytokine production and hematopoietic precursor inhibitory effect. We found that mutated-NPM1-specific CTLs, displaying specific cytokine production and high-level cytotoxicity against patients' leukemia blasts, and limited inhibitory activity in clonogenic assays, could be obtained from both patients and donors. The polyfunctional mutated-NPM1-specific CTLs included both CD8+ and CD4+ T cells endowed with strong lytic capacity. Our results suggest that mutated-NPM1-targeted CTLs may be a useful therapeutic option to control low-tumor burden relapse following conventional chemotherapy in older NPM1-mutated AML patients or eradicate persistent MRD after HSCT.

3.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36765928

RESUMEN

Multiple Myeloma (MM) typically originates from underlying precursor conditions, known as Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM). Validated risk factors, related to the main features of the clonal plasma cells, are employed in the current prognostic models to assess long-term probabilities of progression to MM. In addition, new prognostic immunologic parameters, measuring protective MM-specific T-cell responses, could help to identify patients with shorter time-to-progression. In this report, we described a novel Multi-antigenic Myeloma-specific (MaMs) T-cell assay, based on ELISpot technology, providing simultaneous evaluation of T-cell responses towards ten different MM-associated antigens. When performed during long-term follow-up (mean 28 months) of 33 patients with either MGUS or SMM, such deca-antigenic myeloma-specific immunoassay allowed to significantly distinguish between stable vs. progressive disease (p < 0.001), independently from the Mayo Clinic risk category. Here, we report the first clinical experience showing that a wide (multi-antigen), standardized (irrespective to patients' HLA), MM-specific T-cell assay may routinely be applied, as a promising prognostic tool, during the follow-up of MGUS/SMM patients. Larger studies are needed to improve the antigenic panel and further explore the prognostic value of MaMs test in the risk assessment of patients with monoclonal gammopathies.

4.
Clin Exp Med ; 23(4): 1171-1180, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36495369

RESUMEN

The trajectory of B cell development goes through subsequent steps governed by complex genetic programs, strictly regulated by multiple transcription factors. Interferon regulatory factor 4 (IRF4) regulates key points from pre-B cell development and receptor editing to germinal center formation, class-switch recombination and plasma cell differentiation. The pleiotropic ability of IRF4 is mediated by its "kinetic control", allowing different IRF4 expression levels to activate distinct genetic programs due to modulation of IRF4 DNA-binding affinity. IRF4 is implicated in B cell malignancies, acting both as tumor suppressor and as tumor oncogene in different types of precursors and mature B cell neoplasia. Here, we summarize the complexity of IRF4 functions related to different DNA-binding affinity, multiple IRF4-specific target DNA motif, and interactions with transcriptional partners. Moreover, we describe the unique role of IRF4 in acute leukemias and B cell mature neoplasia, focusing on pathogenetic implications and possible therapeutic strategies in multiple myeloma and chronic lymphocytic leukemia.


Asunto(s)
Centro Germinal , Neoplasias , Humanos , Diferenciación Celular , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , ADN/metabolismo
6.
Int J Mol Sci ; 23(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35563634

RESUMEN

Multiple Myeloma (MM) is a malignant growth of clonal plasma cells, typically arising from asymptomatic precursor conditions, namely monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Profound immunological dysfunctions and cytokine deregulation are known to characterize the evolution of the disease, allowing immune escape and proliferation of neoplastic plasma cells. In the past decades, several studies have shown that the immune system can recognize MGUS and MM clonal cells, suggesting that anti-myeloma T cell immunity could be harnessed for therapeutic purposes. In line with this notion, chimeric antigen receptor T cell (CAR-T) therapy is emerging as a novel treatment in MM, especially in the relapsed/refractory disease setting. In this review, we focus on the pivotal contribution of T cell impairment in the immunopathogenesis of plasma cell dyscrasias and, in particular, in the disease progression from MGUS to SMM and MM, highlighting the potentials of T cell-based immunotherapeutic approaches in these settings.


Asunto(s)
Gammopatía Monoclonal de Relevancia Indeterminada , Mieloma Múltiple , Paraproteinemias , Mieloma Múltiple Quiescente , Progresión de la Enfermedad , Humanos , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Mieloma Múltiple/patología , Mieloma Múltiple/terapia , Paraproteinemias/terapia , Linfocitos T/patología
7.
Cells ; 11(6)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35326454

RESUMEN

In recent years, the introduction of new drugs targeting Bruton's tyrosine kinase (BTK) has allowed dramatic improvement in the prognosis of patients with chronic lymphocytic leukemia (CLL) and other B-cell neoplasms. Although these small molecules were initially considered less immunosuppressive than chemoimmunotherapy, an increasing number of reports have described the occurrence of unexpected opportunistic fungal infections, in particular invasive aspergillosis (IA). BTK represents a crucial molecule in several signaling pathways depending on different immune receptors. Based on a variety of specific off-target effects on innate immunity, namely on neutrophils, monocytes, pulmonary macrophages, and nurse-like cells, ibrutinib has been proposed as a new host factor for the definition of probable invasive pulmonary mold disease. The role of platelets in the control of fungal growth, through granule-dependent mechanisms, was described in vitro almost two decades ago and is, so far, neglected by experts in the field of clinical management of IA. In the present study, we confirm the antifungal role of platelets, and we show, for the first time, that the exposure to BTK inhibitors impairs several immune functions of platelets in response to Aspergillus fumigatus, i.e., the ability to adhere to conidia, activation (as indicated by reduced expression of P-selectin), and direct killing activity. In conclusion, our experimental data suggest that antiplatelet effects of BTK inhibitors may contribute to an increased risk for IA in CLL patients.


Asunto(s)
Aspergilosis , Infecciones Fúngicas Invasoras , Leucemia Linfocítica Crónica de Células B , Agammaglobulinemia Tirosina Quinasa/metabolismo , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Plaquetas/metabolismo , Humanos , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502069

RESUMEN

The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.


Asunto(s)
Antígenos de Neoplasias/inmunología , Leucemia Mieloide Aguda/inmunología , Proteínas Nucleares/genética , Linfocitos T/inmunología , Animales , Humanos , Inmunoterapia/métodos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutación , Proteínas Nucleares/inmunología , Nucleofosmina
10.
Cancers (Basel) ; 13(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34572809

RESUMEN

Along with the evolution of immunophenotypic and molecular diagnostics, the assessment of Minimal Residual Disease (MRD) has progressively become a keystone in the clinical management of hematologic malignancies, enabling valuable post-therapy risk stratifications and guiding risk-adapted therapeutic approaches. However, specific prognostic values of MRD in different hematological settings, as well as its appropriate clinical uses (basically, when to measure it and how to deal with different MRD levels), still need further investigations, aiming to improve standardization and harmonization of MRD monitoring protocols and MRD-driven therapeutic strategies. Currently, MRD measurement in hematological neoplasms with bone marrow involvement is based on advanced highly sensitive methods, able to detect either specific genetic abnormalities (by PCR-based techniques and next-generation sequencing) or tumor-associated immunophenotypic profiles (by multiparametric flow cytometry, MFC). In this review, we focus on the growing clinical role for MFC-MRD diagnostics in hematological malignancies-from acute myeloid and lymphoblastic leukemias (AML, B-ALL and T-ALL) to chronic lymphocytic leukemia (CLL) and multiple myeloma (MM)-providing a comparative overview on technical aspects, clinical implications, advantages and pitfalls of MFC-MRD monitoring in different clinical settings.

11.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672997

RESUMEN

The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.


Asunto(s)
Células Madre Hematopoyéticas/inmunología , Inmunoterapia/métodos , Inflamación/inmunología , Trastornos Mieloproliferativos/terapia , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Calreticulina/genética , Calreticulina/inmunología , Calreticulina/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Inflamación/genética , Janus Quinasa 2/genética , Janus Quinasa 2/inmunología , Janus Quinasa 2/metabolismo , Mutación/inmunología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/inmunología , Cromosoma Filadelfia , Linfocitos T/metabolismo , Microambiente Tumoral/genética
12.
Ann Hematol ; 99(9): 2201-2203, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32699943
13.
Oncotarget ; 10(8): 869-882, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30783516

RESUMEN

Nucleophosmin(NPM1)-mutated protein, a leukemia-specific antigen, represents an ideal target for AML immunotherapy. We investigated the dynamics of NPM1-mutated-specific T cells on PB and BM samples, collected from 31 adult NPM1-mutated AML patients throughout the disease course, and stimulated with mixtures of 18 short and long peptides (9-18mers), deriving from the complete C-terminal of the NPM1-mutated protein. Two 9-mer peptides, namely LAVEEVSLR and AVEEVSLRK (13.9-14.9), were identified as the most immunogenic epitopes. IFNγ-producing NPM1-mutated-specific T cells were observed by ELISPOT assay after stimulation with peptides 13.9-14.9 in 43/85 (50.6%) PB and 34/80 (42.5%) BM samples. An inverse correlation between MRD kinetics and anti-leukemic specific T cells was observed. Cytokine Secretion Assays allowed to predominantly and respectively identify Effector Memory and Central Memory T cells among IFNγ-producing and IL2-producing T cells. Moreover, NPM1-mutated-specific CTLs against primary leukemic blasts or PHA-blasts pulsed with different peptide pools could be expanded ex vivo from NPM1-mutated AML patients or primed in healthy donors. We describe the spontaneous appearance and persistence of NPM1-mutated-specific T cells, which may contribute to the maintenance of long-lasting remissions. Future studies are warranted to investigate the potential role of both autologous and allogeneic adoptive immunotherapy in NPM1-mutated AML patients.

16.
Blood ; 129(5): 582-586, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-27927646

RESUMEN

Although the emergence of bone marrow (BM)-resident p190BCR-ABL-specific T lymphocytes has been correlated with hematologic and cytogenetic remissions in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) undergoing maintenance tyrosine-kinase inhibitor treatment, little is known about the possibility of culturing these cells ex vivo and using them in T-cell therapy strategies. We investigated the feasibility of expanding/priming p190BCR-ABL-specific T cells in vitro by stimulation with dendritic cells pulsed with p190BCR-ABL peptides derived from the BCR-ABL junctional region and alternative splicing, and of adoptively administering them to patients with relapsed disease. We report on the feasibility of producing clinical-grade BCR-ABL-specific cytotoxic T lymphocytes (CTLs), endowed with antileukemia activity, from Ph+ ALL patients and healthy donors. We treated 3 patients with Ph+ ALL with autologous or allogeneic p190BCR-ABL-specific CTLs. No postinfusion toxicity was observed, except for a grade II skin graft-versus-host disease in the patient treated for hematologic relapse. All patients achieved a molecular or hematologic complete remission (CR) after T-cell therapy, upon emergence of p190BCR-ABL-specific T cells in the BM. Our results show that p190BCR-ABL-specific CTLs are capable of controlling treatment-refractory Ph+ ALL in vivo, and support the development of adoptive immunotherapeutic approaches with BCR-ABL CTLs in Ph+ ALL.


Asunto(s)
Traslado Adoptivo/métodos , Proteínas de Fusión bcr-abl/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Inhibidores de Proteínas Quinasas/uso terapéutico , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/trasplante , Adulto , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología
17.
Clin Case Rep ; 4(12): 1138-1146, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27980750

RESUMEN

Based upon the clinical behavior of three patients, we suggest that the combination of low-dose Ara-C and all-trans retinoic acid may potentially be effective in some elderly patients, unfit for intensive chemotherapy, affected with NPM1-mutated acute myeloid leukemia without FLT3 mutations, warranting perspective clinical studies in these selected patients.

18.
Eur J Pharm Biopharm ; 99: 7-17, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26625717

RESUMEN

Silencing of the B lymphocyte-induced maturation protein 1 (Blimp-1), a pivotal transcriptional regulator during terminal differentiation of B cells into plasma cells with siRNAs is under investigation as novel therapeutic approach in Primary Effusion Lymphoma (PEL), a HHV-8 related and aggressive B cell Lymphoma currently lacking of an efficacious therapeutic approach. The clinical application of small interfering RNA (siRNA) in cancer therapy is limited by the lack of an efficient systemic siRNA delivery system. In this study we aim to develop pegylated siRNA lipoplexes formed using the cationic lipid DOTAP and DSPE-PEG2000, capable to effectively stabilize anti-Blimp-1 siRNA and suitable for systemic administration. Two types of pegylated lipoplexes using a classic (C-PEG Lipoplexes) or a post-pegylation method (P-PEG-Lipoplexes) were formulated and compared in their physicochemical properties (size, zeta potential, morphology and structure) and efficiency on PEL cell lines. A stable siRNAs protection was obtained with post pegylation approach (2% molar of DSPE-PEG2000 with respect to lipid) resulting in structures with diameters of 300 nm and a complexation efficiency higher that 80% (0.08 nmol/10 nmol of lipid). In vitro studies on PEL cell lines suggested that empty liposomes were characterized by a low cell toxicity also after PEG modification (cell viability and cell density over 85% after treatment with 10 µM of lipid). We demonstrated that P-PEG-Lipoplexes were able to significantly reduce the levels of BLIMP-1 protein leading to reduction of viability (less that 15% after transfection with 100 nM of complexed siRNAs) and activation of apoptosis. In vitro efficiency encourages us to further test the in vivo potential of P-PEG-Lipoplexes in PEL therapy.


Asunto(s)
Silenciador del Gen , Terapia Genética/métodos , Linfoma de Efusión Primaria/genética , Polietilenglicoles/administración & dosificación , ARN Interferente Pequeño/genética , Proteínas Represoras/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Humanos , Liposomas , Linfoma de Efusión Primaria/metabolismo , Linfoma de Efusión Primaria/terapia , Factor 1 de Unión al Dominio 1 de Regulación Positiva , ARN Interferente Pequeño/administración & dosificación , Proteínas Represoras/antagonistas & inhibidores
19.
Med Mycol ; 54(3): 327-32, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26705835

RESUMEN

Bone marrow has already been described as an enrichment site for several antigen-specific T lymphocytes, but the presence of mould-specific T cells has never been investigated in the bone marrow. We have previously demonstrated that mould-specific T cells emerge in the peripheral blood of patients with invasive fungal infections (IFI) but tend to become undetectable after disease resolution. In seven patients with a history of IFI, we investigated the presence of mould-specific T cells secreting different cytokines in bone marrow and peripheral blood paired samples. The results showed that the frequencies of mould-specific T cells secreting the protective cytokine IFNγ are significantly higher in bone marrow (BM) and are mainly represented by CD8+ T lymphocytes with effector phenotype. A putative disappearance of such protective BM responses after myeloablative therapy could contribute to the increased risk of IFI in hematologic patients.


Asunto(s)
Médula Ósea/inmunología , Linfocitos T CD8-positivos/inmunología , Fungemia/inmunología , Hongos/inmunología , Adulto , Anciano , Sangre/inmunología , Estudios de Cohortes , Femenino , Humanos , Interferón gamma/metabolismo , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...