Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Cancers (Basel) ; 15(3)2023 Jan 17.
Article En | MEDLINE | ID: mdl-36765531

PURPOSE: Glioblastoma (GBM) is the most common primary brain tumour and one of the deadliest cancers. In addition to late diagnosis and inadequate treatment, the extremely low survival rate is also due to the lack of appropriate therapeutic biomarkers and corresponding therapeutic agents. One of the potential therapeutic biomarkers is the intermediate filament vimentin, which is associated with epithelial-mesenchymal transition (EMT). The purpose of this study was to analyse the effect of the anti-vimentin nanobody Nb79 on cell invasion in vitro and in vivo. To further our understanding of the mechanism of action, we investigated the association between Nb79 and EMT in GBM and GBM stem cells by analysing the expression levels of key EMT-related proteins. METHODS: The expression of vimentin in glioma tissues and cells was determined by RT-qPCR. An invasion assay was performed on differentiated glioblastoma cell line U-87 MG and stem cell line NCH421k in vitro as well as in vivo in zebrafish embryos. The effect of Nb79 on expression of EMT biomarkers beta-catenin, vimentin, ZEB-1 and ZO1 was determined by Western blot and immunocytochemistry. RESULTS: Our study shows that vimentin is upregulated in glioblastoma tissue compared to lower grade glioma and non-tumour brain tissue. We demonstrated that treatment with Nb79 reduced glioblastoma cell invasion by up to 64% in vitro and up to 21% in vivo. In addition, we found that the tight junction protein ZO-1 had higher expression on the cell membrane, when treated with inhibitory anti-vimentin Nb79 compared to control. CONCLUSION: In conclusion, our results suggest that anti-vimentin nanobody Nb79 is a promising tool to target glioblastoma cell invasion.

2.
Int J Mol Sci ; 23(3)2022 Feb 04.
Article En | MEDLINE | ID: mdl-35163706

Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and C-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.


Brain Neoplasms/metabolism , Cathepsin Z/metabolism , Glioblastoma/metabolism , Phosphopyruvate Hydratase/metabolism , Tumor Microenvironment , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cathepsin Z/antagonists & inhibitors , Cathepsin Z/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Macrophages/drug effects , Macrophages/metabolism , Microglia/drug effects , Microglia/metabolism , Up-Regulation
3.
Molecules ; 26(17)2021 Aug 25.
Article En | MEDLINE | ID: mdl-34500575

Glioblastoma (GB), is the most common and aggressive malignant primary brain tumour in adults. Intra- and inter-tumour heterogeneity, infiltrative GB cell invasion and presence of therapy-resistant GB stem cells (GSCs) represent major obstacles to favourable prognosis and poor therapy response. Identifying the biomarkers of the most aggressive tumour cells and their more efficient targeting strategies are; therefore, crucial. Recently, transcription factor TRIM28 has been identified as a GB biomarker and, in this study, we have shown high expression of TRIM28 in GB and in low grade gliomas as well as higher expression in GSCs vs. differentiated GB cells, although in both cases not significant. We demonstrated significant in vitro inhibition of GB cells and GSCs invasiveness and spread in zebrafish brains in vivo by anti-TRIM28 selective nanobody NB237. TRIM28 was also enriched in GB (tumour) core and associated with the expression of stem cell genes, but was not prognostic for overall survival. However, based on the above results, we conclude that TRIM28 nanobody NB237 offers a new opportunity as a GB therapeutic tool.


Brain Neoplasms/metabolism , Glioblastoma/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Zebrafish/metabolism
4.
J Histochem Cytochem ; 69(12): 775-794, 2021 12.
Article En | MEDLINE | ID: mdl-34310223

Proteolytic activity is perturbed in tumors and their microenvironment, and proteases also affect cancer stem cells (CSCs). CSCs are the therapy-resistant subpopulation of cancer cells with tumor-initiating capacity that reside in specialized tumor microenvironment niches. In this review, we briefly summarize the significance of proteases in regulating CSC activities with a focus on brain tumor glioblastoma. A plethora of proteases and their inhibitors participate in CSC invasiveness and affect intercellular interactions, enhancing CSC immune, irradiation, and chemotherapy resilience. Apart from their role in degrading the extracellular matrix enabling CSC migration in and out of their niches, we review the ability of proteases to modulate CSC properties, which prevents their elimination. When designing protease-oriented therapies, the multifaceted roles of proteases should be thoroughly investigated.


Brain Neoplasms/therapy , Glioblastoma/therapy , Neoplastic Stem Cells/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Biomarkers, Tumor/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Extracellular Matrix/metabolism , Humans , Molecular Targeted Therapy , Neoplastic Stem Cells/cytology , Protease Inhibitors/metabolism , Signal Transduction , Stem Cell Niche
5.
Cell Oncol (Dordr) ; 44(5): 1051-1063, 2021 Oct.
Article En | MEDLINE | ID: mdl-34189679

PURPOSE: Glioblastoma, the most aggressive type of brain cancer, is composed of heterogeneous populations of differentiated cells, cancer stem cells and immune cells. Cystatin F, an endogenous inhibitor of lysosomal cysteine peptidases, regulates the function of cytotoxic immune cells. The aim of this study was to determine which type of cells expresses cystatin F in glioblastoma and to determine the role of cystatin F during disease progression. METHODS: RT-qPCR and immunohistochemistry were used to determine cystatin F mRNA and protein levels in glioblastoma tissue samples. The internalization of cystatin F was analyzed by Western blotting. Enzyme kinetics, real time invasion and calcein release cytotoxicity assays were used to assess the role of internalized cystatin F. RESULTS: We found that cystatin F was not expressed in non-cancer brain tissues, but that its expression increased with glioma progression. In tumor tissues, extensive staining was observed in cancer stem-like cells and microglia/monocytes, which secrete cystatin F into their microenvironment. In trans activity of cystatin F was confirmed using an in vitro glioblastoma cell model. Internalized cystatin F affected cathepsin L activity in glioblastoma cells and decreased their invasiveness. In addition, we found that cystatin F decreased the susceptibility of glioblastoma cells to the cytotoxic activity of natural killer (NK) cells. CONCLUSIONS: Our data implicate cystatin F as a mediator of immune suppression in glioblastoma. Increased cystatin F mRNA and protein levels in immune, glioblastoma and glioblastoma stem-like cells or trans internalized cystatin F may have an impact on decreased susceptibility of glioblastoma cells to NK cytotoxicity.


Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Cystatins/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Killer Cells, Natural/metabolism , Neoplastic Stem Cells/metabolism , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Line, Tumor , Cells, Cultured , Cystatins/metabolism , Cytotoxicity, Immunologic/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Immunohistochemistry , Microglia/metabolism , Monocytes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
6.
Int J Mol Sci ; 22(9)2021 Apr 24.
Article En | MEDLINE | ID: mdl-33923334

The mechanisms governing therapeutic resistance of the most aggressive and lethal primary brain tumor in adults, glioblastoma, have increasingly focused on tumor stem cells. These cells, protected by the periarteriolar hypoxic GSC niche, contribute to the poor efficacy of standard of care treatment of glioblastoma. Integrated proteogenomic and metabolomic analyses of glioblastoma tissues and single cells have revealed insights into the complex heterogeneity of glioblastoma and stromal cells, comprising its tumor microenvironment (TME). An additional factor, which isdriving poor therapy response is the distinct genetic drivers in each patient's tumor, providing the rationale for a more individualized or personalized approach to treatment. We recently reported that the G protein-coupled receptor CCR5, which contributes to stem cell expansion in other cancers, is overexpressed in glioblastoma cells. Overexpression of the CCR5 ligand CCL5 (RANTES) in glioblastoma completes a potential autocrine activation loop to promote tumor proliferation and invasion. CCL5 was not expressed in glioblastoma stem cells, suggesting a need for paracrine activation of CCR5 signaling by the stromal cells. TME-associated immune cells, such as resident microglia, infiltrating macrophages, T cells, and mesenchymal stem cells, possibly release CCR5 ligands, providing heterologous signaling between stromal and glioblastoma stem cells. Herein, we review current therapies for glioblastoma, the role of CCR5 in other cancers, and the potential role for CCR5 inhibitors in the treatment of glioblastoma.


Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Receptors, CCR5/chemistry , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Molecular Targeted Therapy , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Signal Transduction
7.
Cytometry A ; 99(2): 152-163, 2021 02.
Article En | MEDLINE | ID: mdl-33438373

Glioblastoma (GBM) is one of the most malignant and devastating brain tumors. The presence of highly therapy-resistant GBM cell subpopulations within the tumor mass, rapid invasion into brain tissues and reciprocal interactions with stromal cells in the tumor microenvironment contributes to an inevitable fatal prognosis for the patients. We highlight the most recent evidence of GBM cell crosstalk with mesenchymal stem cells (MSCs), which occurs either by direct cell-cell interactions via gap junctions and microtubules or cell fusion. MSCs and GBM paracrine interactions are commonly observed and involve cytokine signaling, regulating MSC tropism toward GBM, their intra-tumoral distribution, and immune system responses. MSC-promoted effects depending on their cytokine and receptor expression patterns are considered critical for GBM progression. MSC origin, tumor heterogeneity and plasticity may also determine the outcome of such interactions. Kinins and kinin-B1 and -B2 receptors play important roles in information flow between MSCs and GBM cells. Kinin-B1 receptor activity favors tumor migration and fusion of MSCs and GBM cells. Flow and image (tissue) cytometry are powerful tools to investigate GBM cell and MSC crosstalk and are applied to analyze and characterize several other cancer types.


Brain Neoplasms , Glioblastoma , Mesenchymal Stem Cells , Cell Line, Tumor , Humans , Kinins , Tumor Microenvironment
8.
Int J Mol Sci ; 21(12)2020 Jun 12.
Article En | MEDLINE | ID: mdl-32545571

The chemokine CCL5/RANTES is a versatile inflammatory mediator, which interacts with the receptor CCR5, promoting cancer cell interactions within the tumor microenvironment. Glioblastoma is a highly invasive tumor, in which CCL5 expression correlates with shorter patient survival. Using immunohistochemistry, we identified CCL5 and CCR5 in a series of glioblastoma samples and cells, including glioblastoma stem cells. CCL5 and CCR5 gene expression were significantly higher in a cohort of 38 glioblastoma samples, compared to low-grade glioma and non-cancerous tissues. The in vitro invasion of patients-derived primary glioblastoma cells and glioblastoma stem cells was dependent on CCL5-induced CCR5 signaling and is strongly inhibited by the small molecule CCR5 antagonist maraviroc. Invasion of these cells, which was enhanced when co-cultured with mesenchymal stem cells (MSCs), was inhibited by maraviroc, suggesting that MSCs release CCR5 ligands. In support of this model, we detected CCL5 and CCR5 in MSC monocultures and glioblastoma-associated MSC in tissue sections. We also found CCR5 expressing macrophages were in close proximity to glioblastoma cells. In conclusion, autocrine and paracrine cross-talk in glioblastoma and, in particular, glioblastoma stem cells with its stromal microenvironment, involves CCR5 and CCL5, contributing to glioblastoma invasion, suggesting the CCL5/CCR5 axis as a potential therapeutic target that can be targeted with repositioned drug maraviroc.


Brain Neoplasms/pathology , Chemokine CCL5/metabolism , Glioblastoma/pathology , Receptors, CCR5/metabolism , Up-Regulation , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Coculture Techniques , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Maraviroc/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Neoplasm Grading , Neoplasm Invasiveness , Receptors, CCR5/genetics , Signal Transduction/drug effects , Tumor Microenvironment , Up-Regulation/drug effects
9.
Exp Cell Res ; 356(1): 64-73, 2017 07 01.
Article En | MEDLINE | ID: mdl-28412241

Low-grade, pilocytic astrocytomas are treated by resection, but additional therapy is necessary for those tumors with anaplastic features. Arsenic trioxide (As2O3) is emerging as an effective chemotherapeutic agent for treatment of malignant glioblastoma multiforme, where Cathepsin L silencing enables lower, less harmful As2O3 concentrations to achieve the desired cytotoxic effect. Here, we evaluated the effects of As2O3 combined with stable Cathepsin L shRNA silencing on cell viability/metabolic activity, and apoptosis in primary cultures of recurrent malignantly transformed pilocytic astrocytoma (MPA). These cells expressed high Cathepsin L levels, and when grown as monolayers and spheroids, they were more resistant to As2O3 than the U87MG glioblastoma cell line. Caspases 3/7 activity in MPA58 spheroids was not significantly affected by As2O3, possibly due to higher chemoresistance of primary biopsy tissue of less malignant astrocytoma versus the malignant U87MG cell line. However, As2O3 treatment was cytotoxic to MPA spheroids after silencing of Cathepsin L expression. While Cathepsin L silencing only slightly decreased the live/dead cell ratio in As2O3-treated MPA-si spheroids under our experimental conditions, there was an increase in As2O3-mediated apoptosis in MPA-si spheroids, as indicated by elevated caspases 3/7 activity. Therefore, Cathepsin L silencing by gene manipulation can be applied when a more aggressive approach is needed in treatment of pilocytic astrocytomas with anaplastic features.


Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arsenicals/pharmacology , Astrocytoma/drug therapy , Brain Neoplasms/drug therapy , Caspase 3/metabolism , Caspase 7/metabolism , Cathepsin L/genetics , Oxides/pharmacology , Spinal Cord Neoplasms/drug therapy , Animals , Apoptosis/genetics , Arsenic Trioxide , Cell Survival/drug effects , Cell Survival/genetics , Drug Resistance, Neoplasm , Energy Metabolism/drug effects , Energy Metabolism/genetics , Enzyme Activation/immunology , Glioblastoma/drug therapy , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Oxides/toxicity , RNA Interference , RNA, Small Interfering/genetics , Spheroids, Cellular , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Oncotarget ; 8(15): 25482-25499, 2017 Apr 11.
Article En | MEDLINE | ID: mdl-28424417

Glioblastoma multiforme are an aggressive form of brain tumors that are characterized by distinct invasion of single glioblastoma cells, which infiltrate the brain parenchyma. This appears to be stimulated by the communication between cancer and stromal cells. Mesenchymal stem cells (MSCs) are part of the glioblastoma microenvironment, and their 'cross-talk' with glioblastoma cells is still poorly understood. Here, we examined the effects of bone marrow-derived MSCs on two different established glioblastoma cell lines U87 and U373. We focused on mutual effects of direct MSC/glioblastoma contact on cellular invasion in three-dimensional invasion assays in vitro and in a zebrafish embryo model in vivo. This is the first demonstration of glioblastoma cell-type-specific responses to MSCs in direct glioblastoma co-cultures, where MSCs inhibited the invasion of U87 cells and enhanced the invasion of U373. Inversely, direct cross-talk between MSCs and both of glioblastoma cell lines enhanced MSC motility. MSC-enhanced invasion of U373 cells was assisted by overexpression of proteases cathepsin B, calpain1, uPA/uPAR, MMP-2, -9 and -14, and increased activities of some of these proteases, as determined by the effects of their selective inhibitors on invasion. In contrast, these proteases had no effect on U87 cell invasion under MSC co-culturing. Finally, we identified differentially expressed genes, in U87 and U373 cells that could explain different response of these cell lines to MSCs. In conclusion, we demonstrated that MSC/glioblastoma cross-talk is different in the two glioblastoma cell phenotypes, which contributes to tumor heterogeneity.


Brain Neoplasms/genetics , Glioblastoma/genetics , Animals , Brain Neoplasms/pathology , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Glioblastoma/pathology , Humans , Mesenchymal Stem Cells/metabolism , Zebrafish
11.
Polymers (Basel) ; 9(3)2017 Feb 25.
Article En | MEDLINE | ID: mdl-30970762

Samples of polymer polyethylene terephthalate were exposed to a weakly ionized gaseous plasma to modify the polymer surface properties for better cell cultivation. The gases used for treatment were sulfur dioxide and oxygen of various partial pressures. Plasma was created by an electrodeless radio frequency discharge at a total pressure of 60 Pa. X-ray photoelectron spectroscopy showed weak functionalization of the samples' surfaces with the sulfur, with a concentration around 2.5 at %, whereas the oxygen concentration remained at the level of untreated samples, except when the gas mixture with oxygen concentration above 90% was used. Atomic force microscopy revealed highly altered morphology of plasma-treated samples; however, at high oxygen partial pressures this morphology vanished. The samples were then incubated with human umbilical vein endothelial cells. Biological tests to determine endothelialization and possible toxicity of the plasma-treated polyethylene terephthalate samples were performed. Cell metabolic activity (MTT) and in vitro toxic effects of unknown compounds (TOX) were assayed to determine the biocompatibility of the treated substrates. The biocompatibility demonstrated a well-pronounced maximum versus gas composition which correlated well with development of the surface morphology.

12.
Biol Chem ; 398(7): 709-719, 2017 06 27.
Article En | MEDLINE | ID: mdl-28002021

Proteolytic enzymes are highly relevant in different processes of cancer progression. Their interplay with other signalling molecules such as cytokines represents important regulation of multicellular cross-talk. In this review, we discuss protease regulation mechanisms of cytokine signalling in various types of cancer. Additionally, we highlight the reverse whereby cytokines have an impact on protease expression in an autocrine and paracrine manner, representing complex feedback mechanisms among multiple members of these two protein families. The relevance of the protease-cytokine axis is illustrated in glioblastoma, where interactions between normal mesenchymal stem cells and cancer cells play an important role in this very malignant form of brain cancer.


Cell Communication , Cytokines/metabolism , Neoplasms/pathology , Peptide Hydrolases/metabolism , Stromal Cells/pathology , Animals , Humans , Neoplasms/enzymology , Neoplasms/metabolism , Signal Transduction
13.
Stem Cells Int ; 2016: 3585362, 2016.
Article En | MEDLINE | ID: mdl-26880955

Mesenchymal stem cells (MSCs) are recognised as a promising tool to improve renal recovery in experimental models of cisplatin-induced acute kidney injury. However, these preclinical studies were performed on severely immunodeficient animals. Here, we investigated whether human umbilical cord derived MSC treatment could equally ameliorate acute kidney injury induced by cisplatin and prolong survival in mice with a normal immune system and those with a suppressed immune system by polyclonal antithymocyte globulin (ATG). We demonstrated that ATG pretreatment, when followed by MSC transplantation, significantly improved injured renal function parameters, as evidenced by decreased blood urea nitrogen and serum creatinine concentration, as well as improved renal morphology. This tissue restoration was also supported by increased survival of mice. The beneficial effects of ATG were associated with reduced level of inflammatory protein serum amyloid A3 and induced antioxidative expression of superoxide dismutase-1 (SOD-1), glutathione peroxidase (GPx), and hem oxygenase-1 (HO-1). Infused MSCs became localised predominantly in peritubular areas and acted to reduce renal cell death. In conclusion, these results show that ATG diminished in situ inflammation and oxidative stress associated with cisplatin-induced acute kidney injury, the effects that may provide more favourable microenvironment for MSC action, with consequential synergistic improvements in renal injury and animal survival as compared to MSC treatment alone.

14.
PLoS One ; 10(5): e0125791, 2015.
Article En | MEDLINE | ID: mdl-25950799

BACKGROUND: Glioblastoma multiforme (GBM) is among the most aggressive cancers with a poor prognosis in spite of a plethora of established diagnostic and prognostic biomarkers and treatment modalities. Therefore, the current goal is the detection of novel biomarkers, possibly detectable in the blood of GBM patients that may enable an early diagnosis and are potential therapeutic targets, leading to more efficient interventions. EXPERIMENTAL PROCEDURES: MicroRNA profiling of 734 human and human-associated viral miRNAs was performed on blood plasma samples from 16 healthy individuals and 16 patients with GBM, using the nCounter miRNA Expression Assay Kits. RESULTS: We identified 19 miRNAs with significantly different plasma levels in GBM patients, compared to the healthy individuals group with the difference limited by a factor of 2. Additionally, 11 viral miRNAs were found differentially expressed in plasma of GBM patients and 24 miRNA levels significantly correlated with the patients' survival. Moreover, the overlap between the group of candidate miRNAs for diagnostic biomarkers and the group of miRNAs associated with survival, consisted of ten miRNAs, showing both diagnostic and prognostic potential. Among them, hsa miR 592 and hsa miR 514a 3p have not been previously described in GBM and represent novel candidates for selective biomarkers. The possible signalling, induced by the revealed miRNAs is discussed, including those of viral origin, and in particular those related to the impaired immune response in the progression of GBM. CONCLUSION: The GBM burden is reflected in the alteration of the plasma miRNAs pattern, including viral miRNAs, representing the potential for future clinical application. Therefore proposed biomarker candidate miRNAs should be validated in a larger study of an independent cohort of patients.


Brain Neoplasms/blood , Glioblastoma/blood , MicroRNAs/genetics , Survival Analysis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/virology , Case-Control Studies , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/virology , Humans , MicroRNAs/blood , Prognosis
15.
Exp Cell Res ; 319(17): 2637-48, 2013 Oct 15.
Article En | MEDLINE | ID: mdl-23968587

Despite improved treatment options, glioblastoma multiforme (GBM) remains the most aggressive brain tumour with the shortest post-diagnostic survival. Arsenite (As2O3) is already being used in the treatment of acute promyelocytic leukaemia (APL), yet its effects on GBM have not been evaluated in detail. In U87MG cell monolayers, we have previously shown that arsenite cytotoxicity significantly increases upon transient inhibition of lysosomal protease Cathepsin L (CatL). As multicellular spheroids more closely represent in vivo tumours, we aimed to evaluate the impact of permanent CatL silencing on arsenite treatment in U87MG spheroids. CatL was stably silenced using shRNA expression plasmid packed lentiviruses. By using metabolic- and cell viability assays, we demonstrated that long-term CatL silencing significantly increased arsenite cytotoxicity in U87MG spheroids. Silenced CatL also increased arsenite-mediated apoptosis in spheroids via elevated p53 expression, Bax/Bcl2 ratio and caspase 3/7 activity, though with lower efficacy than in monolayers. Arsenite cytotoxicity was enhanced by lower CatL activity, since similar cytotoxicity increase was also observed using the novel CatL inhibitor AT094. The results have significant translational impact, since stable CatL silencing would enable the application of lower systemic doses of arsenite to achieve the desired cytotoxic effects on GBMs in vivo.


Apoptosis , Brain Neoplasms/metabolism , Cathepsin L/antagonists & inhibitors , Gene Silencing , Glioblastoma/metabolism , Oxides/toxicity , Spheroids, Cellular/drug effects , Arsenic Trioxide , Arsenicals , Brain Neoplasms/pathology , Cathepsin L/genetics , Cathepsin L/metabolism , Cell Line, Tumor , Cell Survival , Glioblastoma/pathology , Humans , Spheroids, Cellular/metabolism , Tumor Cells, Cultured
...