Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Biomolecules ; 14(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38927051

RESUMEN

Manganese (Mn) is an essential heavy metal in the human body, while excess Mn leads to neurotoxicity, as observed in this study, where 100 µM of Mn was administered to the human neuroblastoma (SH-SY5Y) cell model of dopaminergic neurons in neurodegenerative diseases. We quantitated pathway and gene changes in homeostatic cell-based adaptations to Mn exposure. Utilizing the Gene Expression Omnibus, we accessed the GSE70845 dataset as a microarray of SH-SY5Y cells published by Gandhi et al. (2018) and applied statistical significance cutoffs at p < 0.05. We report 74 pathway and 10 gene changes with statistical significance. ReactomeGSA analyses demonstrated upregulation of histones (5 out of 10 induced genes) and histone deacetylases as a neuroprotective response to remodel/mitigate Mn-induced DNA/chromatin damage. Neurodegenerative-associated pathway changes occurred. NF-κB signaled protective responses via Sirtuin-1 to reduce neuroinflammation. Critically, Mn activated three pathways implicating deficits in purine metabolism. Therefore, we validated that urate, a purine and antioxidant, mitigated Mn-losses of viability in SH-SY5Y cells. We discuss Mn as a hypoxia mimetic and trans-activator of HIF-1α, the central trans-activator of vascular hypoxic mitochondrial dysfunction. Mn induced a 3-fold increase in mRNA levels for antioxidant metallothionein-III, which was induced 100-fold by hypoxia mimetics deferoxamine and zinc.


Asunto(s)
Manganeso , Neuroblastoma , Humanos , Manganeso/toxicidad , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Biomarcadores/metabolismo
2.
Ageing Res Rev ; 99: 102336, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740308

RESUMEN

Several proteins play critical roles in vulnerability or resistance to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and frontotemporal dementia (FTD). Regulation of these proteins is critical to maintaining healthy neurohomeostasis. In addition to transcription factors regulating gene transcription and microRNAs regulating mRNA translation, natural antisense transcripts (NATs) regulate mRNA levels, splicing, and translation. NATs' roles are significant in regulating key protein-coding genes associated with neurodegenerative disorders. Elucidating the functions of these NATs could prove useful in treating or preventing diseases. NAT activity is not restricted to mRNA translation; it can also regulate DNA (de)methylation and other gene expression steps. NATs are noncoding RNAs (ncRNAs) encoded by DNA sequences overlapping the pertinent protein genes. These NATs have complex structures, including introns and exons, and therefore bind their target genes, precursor mRNAs (pre-mRNAs), and mature RNAs. They can occur at the 5'- or 3'-ends of a mRNA-coding sequence or internally to a parent gene. NATs can downregulate translation, e.g., microtubule-associated protein tau (MAPT) antisense-1 gene (MAPT-AS1), or upregulate translation, e.g., ß-Amyloid site Cleaving Enzyme 1 (BACE1) antisense gene (BACE1-AS). Regulation of NATs can parallel pathogenesis, wherein a "pathogenic" NAT (e.g., BACE1-AS) is upregulated under pathogenic conditions, while a "protective" NAT (e.g., MAPT-AS1) is downregulated under pathogenic conditions. As a relatively underexplored endogenous control mechanism of protein expression, NATs may present novel mechanistic targets to prevent or ameliorate aging-related disorders.

3.
Ageing Res Rev ; 98: 102343, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38762101

RESUMEN

Glucagon-like peptide-1 (GLP-1) receptor agonist-based drugs (incretin mimetics) have meaningfully impacted current treatment of type 2 diabetes mellitus (T2DM), and their actions on satiety and weight loss have led to their use as an obesity medication. With multiple pleotropic actions beyond their insulinotropic and weight loss ones, including anti-inflammatory and anti-insulin-resistant effects selectively mediated by their receptors present within numerous organs, this drug class offers potential efficacy for an increasing number of systemic and neurological disorders whose current treatment is inadequate. Among these are a host of neurodegenerative disorders that are prevalent in the elderly, such as Parkinson's and Alzheimer's disease, which have bucked previous therapeutic approaches. An increasing preclinical, clinical, and epidemiological literature suggests that select incretin mimetics may provide an effective treatment strategy, but 'which ones' for 'which disorders' and 'when' remain key open questions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Obesidad , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Animales , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Incretinas/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Fármacos Antiobesidad/uso terapéutico , Fármacos Antiobesidad/farmacología
4.
Brain Commun ; 6(2): fcae082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572270

RESUMEN

The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.

5.
Geroscience ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532069

RESUMEN

The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.

6.
Ageing Res Rev ; 96: 102281, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38513771

RESUMEN

Accumulation of the amyloid ß (Aß) peptide, derived from Aß precursor protein (APP), is a trait of Down syndrome (DS), as is early development of dementia that resembles Alzheimer's disease (AD). Treatments for this AD in DS simply do not. New drug therapies for AD, e.g., Lecanemab, are monoclonal antibodies designed to clear amyloid plaques composed of Aß. The increasingly real ability to target and dispose of Aß favors the use of these drugs in individuals with AD in DS, and, perhaps as earlier intervention for cognitive impairment. We present pertinent similarities between DS and AD in adult DS subjects, discuss challenges to target APP metabolites, and suggest that recently developed antibody treatments against Aß may be worth investigating to treat AD in DS.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Humanos , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Anticuerpos Monoclonales , Fenotipo
7.
J Alzheimers Dis ; 97(1): 239-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38073385

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most prevalent age-related dementia, and, despite numerous attempts to halt or reverse its devastating progression, no effective therapeutics have yet been confirmed clinically. However, one class of agents that has shown promise is certain metal chelators. OBJECTIVE: For the novel assessment of the effect of oral administration of 1,10-phenanthroline-5-amine (PAA) on the severity of amyloid plaque load, we used a transgenic (Tg) mouse model with inserted human autosomally dominant (familial) AD genes: amyloid-ß protein precursor (AßPP) and tau. METHODS: AßPP/Tau transgenic mice that model AD were allotted into one of two groups. The control group received no treatment while the experimental group received PAA in their drinking water starting at 4 months of age. All animals were sacrificed at 1 year of age and their brains were stained with two different markers of amyloid plaques, Amylo-Glo+ and HQ-O. RESULTS: The control animals exhibited numerous dense core plaques throughout the neo- and allo- cortical brain regions. The experimental group treated with PAA, however, showed 62% of the amyloid plaque burden seen in the control group. CONCLUSIONS: Oral daily dosing with PAA will significantly reduce the amyloid plaque burden in transgenic mice that model AD. The underlying mechanism for this protection is not fully known; however, one proposed mechanism involves inhibiting the "metal-seeding" of Aß.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Fenantrolinas/uso terapéutico , Fenantrolinas/metabolismo , Fenantrolinas/farmacología , Placa Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
8.
Front Mol Neurosci ; 16: 1201744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799731

RESUMEN

Metabolites of the Amyloid-ß precursor protein (APP) proteolysis may underlie brain overgrowth in Autism Spectrum Disorder (ASD). We have found elevated APP metabolites (total APP, secreted (s) APPα, and α-secretase adamalysins in the plasma and brain tissue of children with ASD). In this review, we highlight several lines of evidence supporting APP metabolites' potential contribution to macrocephaly in ASD. First, APP appears early in corticogenesis, placing APP in a prime position to accelerate growth in neurons and glia. APP metabolites are upregulated in neuroinflammation, another potential contributor to excessive brain growth in ASD. APP metabolites appear to directly affect translational signaling pathways, which have been linked to single gene forms of syndromic ASD (Fragile X Syndrome, PTEN, Tuberous Sclerosis Complex). Finally, APP metabolites, and microRNA, which regulates APP expression, may contribute to ASD brain overgrowth, particularly increased white matter, through ERK receptor activation on the PI3K/Akt/mTOR/Rho GTPase pathway, favoring myelination.

9.
Front Neurosci ; 17: 1219941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817806

RESUMEN

Introduction: There are 1.5 million new mild traumatic brain injuries (mTBI) annually in the US, with many of the injured experiencing long-term consequences lasting months after the injury. Although the post injury mechanisms are not well understood, current knowledge indicates peripheral immune system activation as a causal link between mTBI and long-term side effects. Through a variety of mechanisms, peripheral innate immune cells are recruited to the CNS after TBI to repair and heal the injured tissue; however, the recruitment and activation of these cells leads to further inflammation. Emerging evidence suggests sympathetic nervous system (SNS) activity plays a substantial role in the recruitment of immune cells post injury. Methods: We sought to identify the peripheral innate immune response after repeated TBIs in addition to repurposing the nonselective beta blocker propranolol as a novel mTBI therapy to limit SNS activity and mTBI pathophysiology in the mouse. Mice underwent repetitive mTBI or sham injury followed by i.p. saline or propranolol. Isolated mRNA derived from femur bone marrow of mice was assayed for changes in gene expression at one day, one week, and four weeks using Nanostring nCounter® stem cell characterization panel. Results: Differential gene expression analysis for bone marrow uncovered significant changes in many genes following drug alone, mTBI alone and drug combined with mTBI. Discussion: Our data displays changes in mRNA at various timepoints, most pronounced in the mTBI propranolol group, suggesting a single dose propranolol injection as a viable future mTBI therapy in the acute setting.

10.
Front Mol Neurosci ; 16: 1201723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808474

RESUMEN

Recent studies promote new interest in the intersectionality between autism spectrum disorder (ASD) and Alzheimer's Disease. We have reported high levels of Amyloid-ß Precursor Protein (APP) and secreted APP-alpha (sAPPa) and low levels of amyloid-beta (Aß) peptides 1-40 and 1-42 (Aß40, Aß42) in plasma and brain tissue from children with ASD. A higher incidence of microcephaly (head circumference less than the 3rd percentile) associates with ASD compared to head size in individuals with typical development. The role of Aß peptides as contributors to acquired microcephaly in ASD is proposed. Aß may lead to microcephaly via disruption of neurogenesis, elongation of the G1/S cell cycle, and arrested cell cycle promoting apoptosis. As the APP gene exists on Chromosome 21, excess Aß peptides occur in Trisomy 21-T21 (Down's Syndrome). Microcephaly and some forms of ASD associate with T21, and therefore potential mechanisms underlying these associations will be examined in this review. Aß peptides' role in other neurodevelopmental disorders that feature ASD and acquired microcephaly are reviewed, including dup 15q11.2-q13, Angelman and Rett syndrome.

12.
NPJ Genom Med ; 7(1): 47, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941185

RESUMEN

MicroRNAs (miRNAs) are found in nerve terminals, synaptic vesicles, and synaptosomes, but it is unclear whether synaptic and cytosolic miRNA populations differ in Alzheimer's disease (AD) or if synaptosomal miRNAs affect AD synapse activity. To address these questions, we generated synaptosomes and cytosolic fractions from postmortem brains of AD and unaffected control (UC) samples and analyzed them using a global Affymetrix miRNAs microarray platform. A group of miRNAs significantly differed (P < 0.0001) with high fold changes variance (+/- >200-fold) in their expressions in different comparisons: (1) UC synaptosome vs UC cytosol, (2) AD synaptosomes vs AD cytosol, (3) AD cytosol vs UC cytosol, and (4) AD synaptosomes vs UC synaptosomes. MiRNAs data analysis revealed that some potential miRNAs were consistently different across sample groups. These differentially expressed miRNAs were further validated using AD postmortem brains, brains of APP transgenic (Tg2576), Tau transgenic (P301L), and wild-type mice. The miR-501-3p, miR-502-3p, and miR-877-5p were identified as potential synaptosomal miRNAs upregulated with disease progression based on AD Braak stages. Gene Ontology Enrichment and Ingenuity Pathway Analysis of synaptosomal miRNAs showed the involvement of miRNAs in nervous system development, cell junction organization, synapse assembly formation, and function of GABAergic synapse. This is the first description of synaptic versus cytosolic miRNAs in AD and their significance in synapse function.

13.
J Biomed Sci ; 29(1): 39, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698225

RESUMEN

We provide a multidimensional sequence of events that describe the electromagnetic field (EMF) stimulation and biological system interaction. We describe this process from the quantum to the molecular, cellular, and organismal levels. We hypothesized that the sequence of events of these interactions starts with the oscillatory effect of the repeated electromagnetic stimulation (REMFS). These oscillations affect the interfacial water of an RNA causing changes at the quantum and molecular levels that release protons by quantum tunneling. Then protonation of RNA produces conformational changes that allow it to bind and activate Heat Shock Transcription Factor 1 (HSF1). Activated HSF1 binds to the DNA expressing chaperones that help regulate autophagy and degradation of abnormal proteins. This action helps to prevent and treat diseases such as Alzheimer's and Parkinson's disease (PD) by increasing clearance of pathologic proteins. This framework is based on multiple mathematical models, computer simulations, biophysical experiments, and cellular and animal studies. Results of the literature review and our research point towards the capacity of REMFS to manipulate various networks altered in aging (Reale et al. PloS one 9, e104973, 2014), including delay of cellular senescence (Perez et al. 2008, Exp Gerontol 43, 307-316) and reduction in levels of amyloid-ß peptides (Aß) (Perez et al. 2021, Sci Rep 11, 621). Results of these experiments using REMFS at low frequencies can be applied to the treatment of patients with age-related diseases. The use of EMF as a non-invasive therapeutic modality for Alzheimer's disease, specifically, holds promise. It is also necessary to consider the complicated and interconnected genetic and epigenetic effects of the REMFS-biological system's interaction while avoiding any possible adverse effects.


Asunto(s)
Enfermedad de Alzheimer , Campos Electromagnéticos , Envejecimiento , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Animales , Humanos , ARN , Factores de Transcripción/metabolismo
14.
15.
Sci Rep ; 12(1): 3074, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197498

RESUMEN

Alzheimer's disease (AD) is marked by neurofibrillary tangles and senile plaques composed of amyloid ß (Aß) peptides. However, specific contributions of different cell types to Aß deposition remain unknown. Non-coding microRNAs (miRNA) play important roles in AD by regulating translation of major associated proteins, such as Aß precursor protein (APP) and ß-site APP-cleaving enzyme (BACE1), two key proteins associated with Aß biogenesis. MiRNAs typically silence protein expression via binding specific sites in mRNAs' 3'-untranslated regions (3'-UTR). MiRNAs regulate protein levels in a cell-type specific manner; however, mechanisms of the variation of miRNA activity remain unknown. We report that miR-298 treatment reduced native APP and BACE1 protein levels in an astrocytic but not in a neuron-like cell line. From miR-298's effects on APP-3'-UTR activity and native protein levels, we infer that differences in APP 3'-UTR length could explain differential miR-298 activity. Such varied or truncated, but natural, 3'-UTR specific to a given cell type provides an opportunity to regulate native protein levels by particular miRNA. Thus, miRNA's effect tailoring to a specific cell type, bypassing another undesired cell type with a truncated 3'-UTR would potentially advance clinically-relevant translational research.


Asunto(s)
Regiones no Traducidas 3'/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Variación Genética , MicroARNs/genética , MicroARNs/fisiología , Biosíntesis de Proteínas/genética , Línea Celular , Humanos
16.
Mol Psychiatry ; 27(2): 1256-1273, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35087196

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss of cognitive, executive, and other mental functions, and is the most common form of age-related dementia. Amyloid-ß peptide (Aß) contributes to the etiology and progression of the disease. Aß is derived from the amyloid-ß precursor protein (APP). Multiple microRNA (miRNA) species are also implicated in AD. We report that human hsa-miR20b-5p (miR-20b), produced from the MIR20B gene on Chromosome X, may play complex roles in AD pathogenesis, including Aß regulation. Specifically, miR-20b-5p miRNA levels were altered in association with disease progression in three regions of the human brain: temporal neocortex, cerebellum, and posterior cingulate cortex. In cultured human neuronal cells, miR-20b-5p treatment interfered with calcium homeostasis, neurite outgrowth, and branchpoints. A single-nucleotide polymorphism (SNP) upstream of the MIR20B gene (rs13897515) associated with differences in levels of cerebrospinal fluid (CSF) Aß1-42 and thickness of the entorhinal cortex. We located a miR-20b-5p binding site in the APP mRNA 3'-untranslated region (UTR), and treatment with miR-20b-5p reduced APP mRNA and protein levels. Network analysis of protein-protein interactions and gene coexpression revealed other important potential miR-20b-5p targets among AD-related proteins/genes. MiR-20b-5p, a miRNA that downregulated APP, was paradoxically associated with an increased risk for AD. However, miR-20b-5p also reduced, and the blockade of APP by siRNA likewise reduced calcium influx. As APP plays vital roles in neuronal health and does not exist solely to be the source of "pathogenic" Aß, the molecular etiology of AD is likely to not just be a disease of "excess" but a disruption of delicate homeostasis.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Calcio , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero
17.
Front Behav Neurosci ; 16: 954319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37082421

RESUMEN

Rationale and Objectives: Ethanol acts directly on the α7 Nicotinic acetylcholine receptor (α7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the α7 receptor regulates these damaging events. Administration of an α7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a α7 agonist in the mesolimbic dopamine system and to determine if administration of an α7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE. Methods: In adult rats, ethanol and the α7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the α7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized. Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence. Discussion: Ethanol acts on the α7 receptor, and the α7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (α7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE.

19.
Sci Rep ; 11(1): 621, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436686

RESUMEN

Late Onset Alzheimer's Disease is the most common cause of dementia, characterized by extracellular deposition of plaques primarily of amyloid-ß (Aß) peptide and tangles primarily of hyperphosphorylated tau protein. We present data to suggest a noninvasive strategy to decrease potentially toxic Aß levels, using repeated electromagnetic field stimulation (REMFS) in primary human brain (PHB) cultures. We examined effects of REMFS on Aß levels (Aß40 and Aß42, that are 40 or 42 amino acid residues in length, respectively) in PHB cultures at different frequencies, powers, and specific absorption rates (SAR). PHB cultures at day in vitro 7 (DIV7) treated with 64 MHz, and 1 hour daily for 14 days (DIV 21) had significantly reduced levels of secreted Aß40 (p = 001) and Aß42 (p = 0.029) peptides, compared to untreated cultures. PHB cultures (DIV7) treated at 64 MHz, for 1 or 2 hour during 14 days also produced significantly lower Aß levels. PHB cultures (DIV28) treated with 64 MHz 1 hour/day during 4 or 8 days produced a similar significant reduction in Aß40 levels. 0.4 W/kg was the minimum SAR required to produce a biological effect. Exposure did not result in cellular toxicity nor significant changes in secreted Aß precursor protein-α (sAPPα) levels, suggesting the decrease in Aß did not likely result from redirection toward the α-secretase pathway. EMF frequency and power used in our work is utilized in human magnetic resonance imaging (MRI, thus suggesting REMFS can be further developed in clinical settings to modulate Aß deposition.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Campos Electromagnéticos , Feto/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Precursor de Proteína beta-Amiloide/genética , Encéfalo/efectos de la radiación , Feto/efectos de la radiación , Humanos , Magnetoterapia , Prohibitinas
20.
Mol Psychiatry ; 26(10): 5636-5657, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-31942037

RESUMEN

Alzheimer's disease (AD) is the most common age-related form of dementia, associated with deposition of intracellular neuronal tangles consisting primarily of hyperphosphorylated microtubule-associated protein tau (p-tau) and extracellular plaques primarily comprising amyloid- ß (Aß) peptide. The p-tau tangle unit is a posttranslational modification of normal tau protein. Aß is a neurotoxic peptide excised from the amyloid-ß precursor protein (APP) by ß-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. MicroRNAs (miRNAs) are short, single-stranded RNAs that modulate protein expression as part of the RNA-induced silencing complex (RISC). We identified miR-298 as a repressor of APP, BACE1, and the two primary forms of Aß (Aß40 and Aß42) in a primary human cell culture model. Further, we discovered a novel effect of miR-298 on posttranslational levels of two specific tau moieties. Notably, miR-298 significantly reduced levels of ~55 and 50 kDa forms of the tau protein without significant alterations of total tau or other forms. In vivo overexpression of human miR-298 resulted in nonsignificant reduction of APP, BACE1, and tau in mice. Moreover, we identified two miR-298 SNPs associated with higher cerebrospinal fluid (CSF) p-tau and lower CSF Aß42 levels in a cohort of human AD patients. Finally, levels of miR-298 varied in postmortem human temporal lobe between AD patients and age-matched non-AD controls. Our results suggest that miR-298 may be a suitable target for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Humanos , Ratones , MicroARNs/genética , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...