Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article En | MEDLINE | ID: mdl-38068992

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by the presence of the BCR-ABL fusion gene, which results from the Philadelphia chromosome. Since the introduction of tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM), the clinical outcomes for patients with CML have improved significantly. However, IM resistance remains the major clinical challenge for many patients, underlining the need to develop new drugs for the treatment of CML. The basis of CML cell resistance to this drug is unclear, but the appearance of additional genetic alterations in leukemic stem cells (LSCs) is the most common cause of patient relapse. However, several groups have identified a rare subpopulation of CD34+ stem cells in adult patients that is present mainly in the bone marrow and is more immature and pluripotent; these cells are also known as very small embryonic-like stem cells (VSELs). The uncontrolled proliferation and a compromised differentiation possibly initiate their transformation to leukemic VSELs (LVSELs). Their nature and possible involvement in carcinogenesis suggest that they cannot be completely eradicated with IM treatment. In this study, we demonstrated that cells from CML patients with the VSELs phenotype (LVSELs) similarly harbor the fusion protein BCR-ABL and are less sensitive to apoptosis than leukemic HSCs after IM treatment. Thus, IM induces apoptosis and reduces the proliferation and mRNA expression of Ki67 more efficiently in LHSCs than in leukemic LVSELs. Finally, we found that the expression levels of some miRNAs are affected in LVSELs. In addition to the tumor suppressor miR-451, both miR-126 and miR-21, known to be responsible for LSC leukemia-initiating capacity, quiescence, and growth, appear to be involved in IM insensitivity of LVSELs CML cell population. Targeting IM-resistant CML leukemic stem cells by acting via the miRNA pathways may represent a promising therapeutic option.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Adult , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/metabolism , Drug Resistance, Neoplasm/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , MicroRNAs/metabolism , Apoptosis , Stem Cells/metabolism , Neoplastic Stem Cells/metabolism
2.
Sci Rep ; 13(1): 19665, 2023 11 11.
Article En | MEDLINE | ID: mdl-37952030

We have previously shown that intracardiac delivery of autologous CD34+ cells after acute myocardial infarction (AMI) is safe and leads to long term improvement. We are now conducting a multicenter, randomized, controlled Phase I/IIb study in post-AMI to investigate the safety and efficacy of intramyocardial injection of expanded autologous CD34+ cells (ProtheraCytes) (NCT02669810). Here, we conducted a series of in vitro studies characterizing the growth factor secretion, exosome secretion, gene expression, cell surface markers, differentiation potential, and angiogenic potential of ProtheraCytes clinical batches to develop a potency assay. We show that ProtheraCytes secrete vascular endothelial growth factor (VEGF) and its concentration is significantly correlated with the number of CD34+ cells obtained after expansion. ProtheraCytes also secrete exosomes containing proangiogenic miRNAs (126, 130a, 378, 26a), antiapoptotic miRNAs (21 and 146a), antifibrotic miRNAs (133a, 24, 29b, 132), and miRNAs promoting myocardial regeneration (199a and 590). We also show that ProtheraCytes have in vitro angiogenic activity, express surface markers of endothelial progenitor cells, and can differentiate in vitro into endothelial cells. After the in vitro characterization of multiple ProtheraCytes clinical batches, we established that measuring the concentration of VEGF provided the most practical, reliable, and consistent potency assay.


Endothelial Progenitor Cells , MicroRNAs , Myocardial Infarction , Humans , Antigens, CD34/metabolism , Endothelial Progenitor Cells/metabolism , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism
3.
Int J Mol Sci ; 24(11)2023 May 31.
Article En | MEDLINE | ID: mdl-37298503

Ex vivo monitored human CD34+ stem cells (SCs) injected into myocardium scar tissue have shown real benefits for the recovery of patients with myocardial infarctions. They have been used previously in clinical trials with hopeful results and are expected to be promising for cardiac regenerative medicine following severe acute myocardial infarctions. However, some debates on their potential efficacy in cardiac regenerative therapies remain to be clarified. To elucidate the levels of CD34+ SC implication and contribution in cardiac regeneration, better identification of the main regulators, pathways, and genes involved in their potential cardiovascular differentiation and paracrine secretion needs to be determined. We first developed a protocol thought to commit human CD34+ SCs purified from cord blood toward an early cardiovascular lineage. Then, by using a microarray-based approach, we followed their gene expression during differentiation. We compared the transcriptome of undifferentiated CD34+ cells to those induced at two stages of differentiation (i.e., day three and day fourteen), with human cardiomyocyte progenitor cells (CMPCs), as well as cardiomyocytes as controls. Interestingly, in the treated cells, we observed an increase in the expressions of the main regulators usually present in cardiovascular cells. We identified cell surface markers of the cardiac mesoderm, such as kinase insert domain receptor (KDR) and the cardiogenic surface receptor Frizzled 4 (FZD4), induced in the differentiated cells in comparison to undifferentiated CD34+ cells. The Wnt and TGF-ß pathways appeared to be involved in this activation. This study underlined the real capacity of effectively stimulated CD34+ SCs to express cardiac markers and, once induced, allowed the identification of markers that are known to be involved in vascular and early cardiogenesis, demonstrating their potential priming towards cardiovascular cells. These findings could complement their paracrine positive effects known in cell therapy for heart disease and may help improve the efficacy and safety of using ex vivo expanded CD34+ SCs.


Myocardial Infarction , Stem Cells , Humans , Stem Cells/metabolism , Myocardium/metabolism , Antigens, CD34/metabolism , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , Cell Differentiation/physiology , Cell Adhesion Molecules/metabolism , Frizzled Receptors/metabolism
4.
Stem Cell Rev Rep ; 18(5): 1614-1626, 2022 06.
Article En | MEDLINE | ID: mdl-35420389

Regenerative medicine now needs to pass a crucial turning point, from academic research to the market. Several sources/types of cells have been experimented with, more or less successfully. CD34+ cells have demonstrated multipotent or even pluripotent capacities, making them good candidates for regenerative medicine, particularly for treating heart diseases. Strongly encouraged by the results we achieved in a pilot study using CD34+ stem cells in patients with poor-prognosis acute myocardial infarcts (AMIs), we soon began the development of an industrialized platform making use of a closed automated device (StemXpand®) and a disposable kit (StemPack®) for the large-scale expansion of CD34+ cells with reproducible good manufacturing practice (GMP). This scalable platform can produce expanded CD34+ cells (ProtheraCytes®) of sufficient quality that, interestingly, express early markers of the cardiac and endothelial pathways and early cardiac-mesoderm markers. They also contain CD34+ pluripotent cells characterized as very small embryonic-like stem cells (VSELs), capable of differentiating under appropriate stimuli into different tissue lineages, including endothelial and cardiomyocytic ones.


Myocardial Infarction , Myocardial Ischemia , Antigens, CD34/metabolism , Embryonic Stem Cells/metabolism , Humans , Myocardial Infarction/therapy , Pilot Projects , Regenerative Medicine/methods
5.
Biology (Basel) ; 10(4)2021 Apr 08.
Article En | MEDLINE | ID: mdl-33918035

CD9 plays a crucial role in cellular growth, mobility, and signal transduction, as well as in hematological malignancy. In myeloid neoplasms, CD9 is involved in the altered interactions between leukemic and stromal cells. However, apart from its role in CD34+ progenitors and myeloid and megakaryocytic differentiation, its function in normal and leukemic pluripotent cells has not yet been determined. Very small embryonic-like stem cells (VSELs) are promising pluripotent stem cells found in adult tissues that can be developed for safe and efficient regenerative medicine. VSELs express different surface receptors of the highest importance in cell functioning, including CD9, and can be effectively mobilized after organ injury or in leukemic patients. In the present study, we observed that CD9 is among the most expressed receptors in VSELs under steady-state conditions; however, once the VSELs are expanded, CD9+ VSELs decrease and are more apoptotic. CD9- VSELs had no proliferative improvement in vitro compared to those that were CD9+. Interestingly, the addition of SDF-1 induced CD9 expression on the surface of VSELs, as observed by flow cytometry, and improved their migration. In addition, we observed, in the phenotypically identical VSELs present in the peripheral blood of patients with myeloproliferative neoplasms, compared to healthy subjects, a significantly higher number of CD9+ cells. However, in their hematopoietic stem cell (HSC) counterparts, the expression remained comparable. These results indicate that, likewise, in progenitors and mature cells, CD9 may play an important function in normal and malignant VSELs. This could explain the refractoriness observed by some groups of expanded stem cells to repairing efficiently damaged tissue when used as a source in cell therapies. Understanding the function of the CD9 receptor in normal and malignant CD34+ and VSELs, along with its relationship with the CXCR4/SDF-1 pathway, will enable advances in the field of adult pluripotent cell usage in regenerative medicine and in their role in leukemia.

6.
Stem Cell Rev Rep ; 14(4): 510-524, 2018 Aug.
Article En | MEDLINE | ID: mdl-29736843

The very small embryonic-like stem cells (VSELs) are known as a subset of adult pluripotent stem cells able to differentiate to all three germ layers. However, their small number and quiescence restrict the possibility of their use in cell therapy. In the present study, we first delineate different subpopulation of VSELs from human cord blood CD34+ cells to define their purity. We next determine genes expression levels in the whole transcriptome of VSELs expressing the pluripotent marker NANOG and control cells under the steady state condition. We found that more than a thousand of genes are downregulated in VSELs, as well as many membrane receptors, cells signaling molecules and CDKs mRNAs. In addition, we observed discordance in some pluripotent genes expression levels with embryonic stem cells (ESCs), which could explain VSELs quiescence. We then evaluate VSELs capacity to expand and differentiate in vitro in specific and appropriate media. After 12 days culture in specific medium containing a pyrimidoindole derivative (UM171), VSELs were significantly expanded for the first time without feeder cells and importantly preserve their capacities to differentiate into hematopoietic and endothelial cells. Interestingly, this stimulation of VSELs self-renewal restores the expression of some downregulated genes known as key regulators of cell proliferation and differentiation. The properties of such pluripotent expanded cells make them a potential candidate in regenerative medicine.


Cell Differentiation/genetics , Cell Proliferation/genetics , Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Adult , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Cells, Cultured , Embryonic Stem Cells/cytology , Fetal Blood/cytology , Gene Expression Profiling , Germ Layers/cytology , Germ Layers/metabolism , Humans , Nanog Homeobox Protein/genetics , Pluripotent Stem Cells/cytology , Regenerative Medicine/methods , SOXF Transcription Factors/genetics
7.
Oncotarget ; 7(11): 12102-20, 2016 Mar 15.
Article En | MEDLINE | ID: mdl-26933814

Hypoxia Inducible Factor (HIF) is the main transcription factor that mediates cell response to hypoxia. Howeverthe complex factor cascades induced by HIF during regenerative angiogenesis are currently incompletely mapped and the biological outcome mediated by chronic HIF induction during vessel regeneration are not well known. Here, we investigated the biological impact of HIF induction on vascular regeneration and identified the differentially regulated genes during regeneration, HIF induction and hypoxic regeneration. The use of the fin zebrafish regeneration model revealed that exposure to HIF inducer (cobalt chloride) prevents vessel differentiation by maintaining their vascular plexuses in an immature state. The regenerated fins are easily breakable, lacking completely endochondral ossification. Gene expression arrays combined to gene functional enrichment analysis revealed that regenerative process and HIF induction shared the regulation of common genes mainly involved in DNA replication and proteasome complex. HIF induction during regeneration affected the expression of exclusive genes involved in cell differentiation and communication, consistent with the observed immature vascular plexuses of the regenerated fins during HIF induction. The use of morpholino (MO) knockdown strategy revealed that the expression of some of these genes such as tubulin and col10a1 are required for fin regeneration. Taken together, this study revealed the impact of HIF induction on regenerative angiogenesis and provided a framework to develop a gene network leading to regenerative process during HIF expression.


Animal Fins/blood supply , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Regeneration/physiology , Animal Fins/physiology , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/physiology , Cell Hypoxia/physiology , Cobalt/pharmacology , Hypoxia-Inducible Factor 1/biosynthesis , Neovascularization, Physiologic/physiology , Signal Transduction , Zebrafish
8.
PLoS One ; 5(7): e11438, 2010 Jul 02.
Article En | MEDLINE | ID: mdl-20625388

BACKGROUND: In zebrafish, vascular endothelial growth factor-C precursor (proVEGF-C) processing occurs within the dibasic motif HSIIRR(214) suggesting the involvement of one or more basic amino acid-specific proprotein convertases (PCs) in this process. In the present study, we examined zebrafish proVEGF-C expression and processing and the effect of unprocessed proVEGF-C on caudal fin regeneration. METHODOLOGY/PRINCIPAL FINDINGS: Cell transfection assays revealed that the cleavage of proVEGF-C, mainly mediated by the proprotein convertases Furin and PC5 and to a less degree by PACE4 and PC7, is abolished by PCs inhibitors or by mutation of its cleavage site (HSIIRR(214) into HSIISS(214)). In vitro, unprocessed proVEGF-C failed to activate its signaling proteins Akt and ERK and to induce cell proliferation. In vivo, following caudal fin amputation, the induction of VEGF-C, Furin and PC5 expression occurs as early as 2 days post-amputation (dpa) with a maximum levels at 4-7 dpa. Using immunofluorescence staining we localized high expression of VEGF-C and the convertases Furin and PC5 surrounding the apical growth zone of the regenerating fin. While expression of wild-type proVEGF-C in this area had no effect, unprocessed proVEGF-C inhibited fin regeneration. CONCLUSIONS/SIGNIFICANCES: Taken together, these data indicate that zebrafish fin regeneration is associated with up-regulation of VEGF-C and the convertases Furin and PC5 and highlight the inhibitory effect of unprocessed proVEGF-C on fin regeneration.


Regeneration/physiology , Vascular Endothelial Growth Factor C/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Zebrafish/physiology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Animals, Genetically Modified/physiology , Blotting, Western , Cell Proliferation , Cells, Cultured , Furin/genetics , Furin/metabolism , Phosphorylation , Polymerase Chain Reaction , Proprotein Convertase 5/genetics , Proprotein Convertase 5/metabolism , Regeneration/genetics , Tyrosine/metabolism , Vascular Endothelial Growth Factor C/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
9.
Recent Pat Anticancer Drug Discov ; 4(1): 83-91, 2009 Jan.
Article En | MEDLINE | ID: mdl-19149690

The setup of tumorigenesis processes is generally associated with various events leading to abnormal expression of oncogenes and/or tumor suppressor genes. Recently, the expression and/or activity of a range of molecules involved in these processes were reported to require proteolytic processing of their precursor proteins by the serine pro-protein convertases (PCs) in order to mediate their biological functions. These include adhesion molecules, proteases, growth factors, cytokines and their receptors. Since their discovery, the identification of new PCs substrates and specific PCs inhibitors became an attractive strategy in cancer therapy. In this review, we will report the implication of these enzymes and the processing of their substrates in tumor progression and metastasis. Newly reported studies on the potential use of the PCs as new therapeutic targets will be also discussed.


Antineoplastic Agents/pharmacology , Neoplasm Metastasis/prevention & control , Neoplasms/enzymology , Protease Inhibitors/pharmacology , Animals , Humans , Neoplasms/drug therapy , Platelet-Derived Growth Factor/metabolism , Proprotein Convertases/analysis , Proprotein Convertases/antagonists & inhibitors , Proprotein Convertases/physiology , Proto-Oncogene Proteins c-sis/metabolism , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
J Biol Chem ; 282(46): 33649-33658, 2007 Nov 16.
Article En | MEDLINE | ID: mdl-17878155

Gene expression programs are established by networks of interacting transcription factors. The basic helix-loop-helix factor SCL and the LIM-only protein LMO2 are components of transcription factor complexes that are essential for hematopoiesis. Here we show that LMO2 and SCL are predominant interaction partners in hematopoietic cells and that this interaction occurs through a conserved interface residing in the loop and helix 2 of SCL. This interaction nucleates the assembly of SCL complexes on DNA and is required for target gene induction and for the stimulation of erythroid and megakaryocytic differentiation. We also demonstrate that SCL determines LMO2 protein levels in hematopoietic cells and reveal that interaction with SCL prevents LMO2 degradation by the proteasome. We propose that the SCL-LMO2 interaction couples protein stabilization with higher order protein complex assembly, thus providing a powerful means of modulating the stoichiometry and spatiotemporal activity of SCL complexes. This interaction likely provides a rate-limiting step in the transcriptional control of hematopoiesis and leukemia, and similar mechanisms may operate to control the assembly of diverse protein modules.


Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Metalloproteins/metabolism , Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Animals , Cell Differentiation , Humans , LIM Domain Proteins , Megakaryocytes/metabolism , Mice , Models, Molecular , Molecular Conformation , Molecular Sequence Data , NIH 3T3 Cells , Protein Conformation , Sequence Homology, Amino Acid , T-Cell Acute Lymphocytic Leukemia Protein 1
11.
Mol Cell Biol ; 24(4): 1439-52, 2004 Feb.
Article En | MEDLINE | ID: mdl-14749362

SCL/TAL1 is a hematopoietic-specific transcription factor of the basic helix-loop-helix (bHLH) family that is essential for erythropoiesis. Here we identify the erythroid cell-specific glycophorin A gene (GPA) as a target of SCL in primary hematopoietic cells and show that SCL occupies the GPA locus in vivo. GPA promoter activation is dependent on the assembly of a multifactorial complex containing SCL as well as ubiquitous (E47, Sp1, and Ldb1) and tissue-specific (LMO2 and GATA-1) transcription factors. In addition, our observations suggest functional specialization within this complex, as SCL provides its HLH protein interaction motif, GATA-1 exerts a DNA-tethering function through its binding to a critical GATA element in the GPA promoter, and E47 requires its N-terminal moiety (most likely entailing a transactivation function). Finally, endogenous GPA expression is disrupted in hematopoietic cells through the dominant-inhibitory effect of a truncated form of E47 (E47-bHLH) on E-protein activity or of FOG (Friend of GATA) on GATA activity or when LMO2 or Ldb-1 protein levels are decreased. Together, these observations reveal the functional complementarities of transcription factors within the SCL complex and the essential role of SCL as a nucleation factor within a higher-order complex required to activate gene GPA expression.


DNA-Binding Proteins/metabolism , Gene Expression Regulation , Glycophorins/genetics , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing , Animals , Base Sequence , Basic Helix-Loop-Helix Transcription Factors , Binding Sites , Cell Line , DNA-Binding Proteins/chemistry , Electrophoretic Mobility Shift Assay , Erythroid-Specific DNA-Binding Factors , GATA1 Transcription Factor , Hematopoietic Stem Cells/metabolism , LIM Domain Proteins , Macromolecular Substances , Metalloproteins/metabolism , Mice , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins/chemistry , Response Elements , Reverse Transcriptase Polymerase Chain Reaction , Sp1 Transcription Factor/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1 , TCF Transcription Factors , Transcription Factor 7-Like 1 Protein , Transcription Factors/chemistry
12.
Development ; 131(3): 693-702, 2004 Feb.
Article En | MEDLINE | ID: mdl-14729577

During development, hematopoiesis initiates in the yolk sac through a process that depends on VEGF/Flk1 signaling and on the function of the SCL/Tal1 transcription factor. Here we show that VEGF modifies the developmental potential of primitive erythroid progenitors and prolongs their life span. Furthermore, the survival of yolk sac erythrocytes in vivo depends on the dose of VEGF. Interestingly, in Vegf(lo/lo) embryos carrying a hypomorph allele, Flk1-positive cells reach the yolk sac at E8.5, but are severely compromised in their ability to generate primitive erythroid precursors. These observations indicate that during embryonic development, different thresholds of VEGF are required for the migration and clonal expansion of hematopoietic precursors. The near absence of primitive erythroid precursors in Vegf(lo/lo) embryos correlates with low levels of Scl in the yolk sac. Strikingly, gain-of-function of SCL partially complements the hematopoietic defect caused by the hypomorph Vegf(lo) allele, and re-establishes the survival of erythroid cells and the expression of erythroid genes (Gata1 and betaH1). This indicates that SCL functions downstream of VEGF to ensure an expansion of the hematopoietic compartment.


Apoptosis/physiology , Cell Movement/physiology , DNA-Binding Proteins/metabolism , Hematopoiesis/physiology , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors , Erythrocytes/metabolism , Erythroid Cells/metabolism , Genes, Lethal , Hematopoietic Stem Cells/metabolism , Mice , T-Cell Acute Lymphocytic Leukemia Protein 1 , Vascular Endothelial Growth Factor A/genetics
...