Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Clin Dysmorphol ; 33(2): 63-68, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38441200

Aniridia is an autosomal dominant condition characterized by the complete or partial absence of the iris, often with additional presentations such as foveal hypoplasia, nystagmus, cataract, glaucoma and other ocular abnormalities. Most cases are caused by heterozygous mutations in the paired box 6 gene (PAX6), which codes for a transcription factor that regulates eye development. Four patients from our hospital who presented with ocular phenotypes were recruited for research sequencing with informed consent. Sanger sequencing of PAX6 coding exons or exome sequencing was performed on genomic DNA from venous blood samples. Variants in PAX6 were identified in the four patients. Two variants are recurrent single-nucleotide substitutions - one is a substitution found in a patient with bilateral aniridia, whereas the other is a splice variant in a patient with nystagmus and neuroblastoma. The other two variants are novel and found in two patients with isolated aniridia. Both are small duplications that are predicted to lead to premature termination. For the recurrent variants, the comparison of phenotypes for patients with identical variants would shed light on the mechanisms of pathogenesis, and the discovery of two novel variants expands the spectrum of PAX6 mutations.


Aniridia , Cataract , Humans , Face , Aniridia/genetics , Cataract/genetics , Exons , Asia, Southeastern , PAX6 Transcription Factor/genetics
2.
J Pediatr Genet ; 12(2): 135-140, 2023 Jun.
Article En | MEDLINE | ID: mdl-37090834

Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders. It is caused by mutations in the neurofibromin-1 gene ( NF1 ) and affects the formation and growth of nerve tissues. More than 3,600 pathogenic variants in the NF1 gene have been identified from patients with most of the germline variants are from the Western populations. We found 16 patients (15 Chinese and 1 Asian Indian) who had heterozygous variants in NF1 through targeted next-generation sequencing. There were 15 different variants: 4 frameshift, 4 nonsense, 5 missense, and 2 splice variants. One nonsense variant and three frameshift variants had never been reported in any population or patient database. Twelve of the 16 patients met the NF1 diagnostic criteria, and each was found to have a pathogenic or likely pathogenic variant. Three different missense variants of unknown significance were discovered in the other four patients who did not meet NF1 diagnostic criteria. Our findings add four novel variants to the list of genetic mutations linked to NF1's various clinical manifestations.

3.
Am J Med Genet A ; 188(7): 2135-2138, 2022 07.
Article En | MEDLINE | ID: mdl-35289498

Pathogenic variants in NOTCH2 which encodes a single-pass transmembrane protein have been identified as a cause of several autosomal dominant congenital disorders. In particular, truncating mutations in exon 34 have been found in patients with skeletal abnormalities and dysmorphic features. We describe a patient with a de novo variant in NOTCH2 who displayed features of both Hajdu-Cheney syndrome (HJCYS) and serpentine fibula-polycystic kidney syndrome (SFPKS). The recurrent nonsense variant in exon 34 has been reported in seven other patients with syndromic presentations, making it the most common pathogenic variant for NOTCH2 in congenital disorders. In addition to the core features of HJCYS and SFPKS, there was a gastrointestinal tract malformation of an imperforate anus which has not been reported in patients with pathogenic variants in NOTCH2.


Codon, Nonsense , Hajdu-Cheney Syndrome , Codon, Nonsense/genetics , Exons/genetics , Hajdu-Cheney Syndrome/genetics , Humans , Mutation , Receptor, Notch2/genetics
4.
Eur J Hum Genet ; 29(11): 1663-1668, 2021 11.
Article En | MEDLINE | ID: mdl-34413497

Heterozygous missense variants in the WD repeat domain 11 (WDR11) gene are associated with hypogonadotropic hypogonadism in humans. In contrast, knockout of both alleles of Wdr11 in mice results in a more severe phenotype with growth and developmental delay, features of holoprosencephaly, heart defects and reproductive disorders. Similar developmental defects known to be associated with aberrant hedgehog signaling and ciliogenesis have been found in zebrafish after Wdr11 knockdown. We here report biallelic loss-of-function variants in the WDR11 gene in six patients from three independent families with intellectual disability, microcephaly and short stature. The findings suggest that biallelic WDR11 variants in humans result in an overlapping but milder phenotype compared to Wdr11-deficient animals. However, the observed human phenotype differs significantly from dominantly inherited variants leading to hypogonadotropic hypogonadism, suggesting that recessive WDR11 variants result in a clinically distinct entity.


Developmental Disabilities/genetics , Intellectual Disability/genetics , Loss of Function Mutation , Membrane Proteins/genetics , Microcephaly/genetics , Phenotype , Proto-Oncogene Proteins/genetics , Adult , Child , Developmental Disabilities/pathology , Female , Humans , Intellectual Disability/pathology , Male , Microcephaly/pathology , Mutation, Missense , Pedigree
5.
Eur J Paediatr Neurol ; 33: 106-111, 2021 Jul.
Article En | MEDLINE | ID: mdl-34133990

Incontinentia Pigmenti (IP) is a neurocutaneous syndrome, with malformations of cortical development and neurodevelopmental delay in some patients. Neonates with IP may develop acute encephalopathy with multifocal ischemic brain lesions with a speckled pattern on diffusion-weighted magnetic resonance imaging (MRI). We observed a similar MRI pattern in 4 female patients with IP who presented with childhood acute encephalopathy syndromes. These patients, aged 9 days to 13 years old, had acute neonatal encephalitis, Influenza A virus related acute necrotizing encephalopathy (ANE) of childhood, Influenza B virus related acute encephalopathy with biphasic seizures and late restricted diffusion (AESD) and acute disseminated encephalitis (ADEM) with transverse myelitis (TM). These lesions could possibly reflect the white matter changes in IP patients with encephalopathy.


Brain Diseases , Incontinentia Pigmenti , Adolescent , Brain/diagnostic imaging , Brain Diseases/etiology , Child , Child, Preschool , Female , Humans , Incontinentia Pigmenti/complications , Infant , Infant, Newborn , Magnetic Resonance Imaging , Seizures
6.
Arch Dis Child ; 106(1): 38-43, 2021 01.
Article En | MEDLINE | ID: mdl-32978145

OBJECTIVE: To test the utility and diagnostic yield of a medical-exome gene panel for identifying pathogenic variants in Mendelian disorders. METHODS: Next-generation sequencing was performed with the TruSight One gene panel (targeting 4813 genes) followed by MiSeq sequencing on 216 patients who presented with suspected genetic disorders as assessed by their attending physicians. RESULTS: There were 56 pathogenic and 36 likely pathogenic variants across 57 genes identified in 87 patients. Causal mutations were more likely to be truncating and from patients with a prior clinical diagnosis. Another 18 promising variants need further evaluation for more evidence to meet the requirement for potential upgrade to pathogenic. Forty-five of the 92 clinically significant variants were novel. CONCLUSION: The 40.3% positive yield compares favourably with similar studies using either this panel or whole exome sequencing, demonstrating that large gene panels could be a good alternative to whole exome sequencing for quick genetic confirmation of Mendelian disorders.


Abnormalities, Multiple/genetics , Exome/genetics , Genetic Predisposition to Disease , Asia, Southeastern , Asian People , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Phenotype , Exome Sequencing
7.
Arch Dis Child ; 106(1): 31-37, 2021 01.
Article En | MEDLINE | ID: mdl-32819910

OBJECTIVE: Use next-generation sequencing (NGS) technology to improve our diagnostic yield in patients with suspected genetic disorders in the Asian setting. DESIGN: A diagnostic study conducted between 2014 and 2019 (and ongoing) under the Singapore Undiagnosed Disease Program. Date of last analysis was 1 July 2019. SETTING: Inpatient and outpatient genetics service at two large academic centres in Singapore. PATIENTS: Inclusion criteria: patients suspected of genetic disorders, based on abnormal antenatal ultrasound, multiple congenital anomalies and developmental delay. EXCLUSION CRITERIA: patients with known genetic disorders, either after clinical assessment or investigations (such as karyotype or chromosomal microarray). INTERVENTIONS: Use of NGS technology-whole exome sequencing (WES) or whole genome sequencing (WGS). MAIN OUTCOME MEASURES: (1) Diagnostic yield by sequencing type, (2) diagnostic yield by phenotypical categories, (3) reduction in time to diagnosis and (4) change in clinical outcomes and management. RESULTS: We demonstrate a 37.8% diagnostic yield for WES (n=172) and a 33.3% yield for WGS (n=24). The yield was higher when sequencing was conducted on trios (40.2%), as well as for certain phenotypes (neuromuscular, 54%, and skeletal dysplasia, 50%). In addition to aiding genetic counselling in 100% of the families, a positive result led to a change in treatment in 27% of patients. CONCLUSION: Genomic sequencing is an effective method for diagnosing rare disease or previous 'undiagnosed' disease. The clinical utility of WES/WGS is seen in the shortened time to diagnosis and the discovery of novel variants. Additionally, reaching a diagnosis significantly impacts families and leads to alteration in management of these patients.


Abnormalities, Multiple/genetics , Developmental Disabilities/genetics , High-Throughput Nucleotide Sequencing , Undiagnosed Diseases/genetics , Abnormalities, Multiple/diagnosis , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/diagnosis , Female , Humans , Infant , Male , Singapore , Undiagnosed Diseases/diagnosis , Young Adult
9.
J Neurol Sci ; 414: 116819, 2020 Jul 15.
Article En | MEDLINE | ID: mdl-32339967

BACKGROUND: Pathogenic variants of the ARID1B gene are recognized as the most common cause of Coffin-Siris syndrome (CSS) and also one of the most common causes for intellectual disability (ID). Reported ARID1B variants in association with CSS are mostly from patients of European ancestry. METHODS: We performed next-generation sequencing to identify pathogenic variants in patients with congenital disorders from the Genetics clinics. The identified variants were validated by Sanger sequencing. Parental samples were tested by Sanger sequencing to determine inheritance status. RESULTS: Truncating variants in ARID1B were identified in five unrelated Asian patients (one Malay, two Chinese and two Indian) with features of CSS. One was a nonsense mutation which had been documented in three other reports while the other four were novel variants, including two nonsense substitutions and two small deletions resulting in premature termination of translation. Similar to previous reports, all patients have developmental and speech delay, with additional presentations such as ectodermal/facial abnormalities commonly observed in CSS patients. CONCLUSIONS: Our results unveil ARID1B variants in association with CSS in multiple Southeast Asian ethnic groups, and confirm that variants associated with this disorder tend to be of the truncating type. This finding may provide additional insight into the function of the protein and the disease mechanism.


Abnormalities, Multiple , DNA-Binding Proteins , Face/abnormalities , Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neck/abnormalities , Transcription Factors , Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Hand Deformities, Congenital/genetics , Humans , Intellectual Disability/genetics , Micrognathism/genetics , Mutation/genetics , Transcription Factors/genetics
10.
Gene ; 731: 144360, 2020 Mar 20.
Article En | MEDLINE | ID: mdl-31935506

Kabuki syndrome (KS) is a rare congenital disorder characterized by distinctive facies, postnatal growth deficiency, cardiac defects and skeletal anomalies. Studies have determined that pathogenic variants of the lysine-specific methyltransferase 2D (KMT2D) and lysine-specific demethylase 6A (KDM6A) genes are the major causes of KS. The two genes encode different histone-modifying enzymes that are found in the same protein complex that is critical for cell differentiation during development. Here we report the results from next-generation sequencing of genomic DNA from 13 patients who had a clinical diagnosis of KS based on facial dysmorphism and other KS-specific cardinal phenotypes. Nine of the 13 patients were confirmed to be carrying heterozygous pathogenic KMT2D variants, seven of which were truncating and two were missense substitutions. Overall, we uncovered 11 novel variants - nine in KMT2D and two in KDM6A. Seven of the novel variants (all KMT2D) were likely causative of the KS phenotype. Our study expands the number of naturally occurring KMT2D and KDM6A variants. The discovery of novel pathogenic variants will add to the knowledge on disease-causing variants and the relevance of missense variants in KS.


Abnormalities, Multiple/genetics , Congenital Abnormalities/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/genetics , Histone Demethylases/genetics , Neoplasm Proteins/genetics , Vestibular Diseases/genetics , Abnormalities, Multiple/epidemiology , Asia, Southeastern/epidemiology , Child , Child, Preschool , Cohort Studies , Congenital Abnormalities/epidemiology , DNA Mutational Analysis/methods , Female , Hematologic Diseases/epidemiology , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , Infant , Infant, Newborn , Male , Mutation, Missense , Phenotype , Sequence Analysis, DNA , Vestibular Diseases/epidemiology
13.
Mol Genet Genomic Med ; 7(4): e00581, 2019 04.
Article En | MEDLINE | ID: mdl-30784236

BACKGROUND: Noonan syndrome (NS) is an autosomal dominant disorder that belongs to a group of developmental disorders called RASopathies with overlapping features and multiple causative genes. The aim of the study was to identify mutations underlying this disorder in patients from Southeast Asia and characterize their clinical presentations. METHODS: Patients were identified from the hospital's Genetics clinics after assessment by attending clinical geneticists. A targeted gene panel was used for next-generation sequencing on genomic DNA extracted from the blood samples of 17 patients. RESULTS: Heterozygous missense variants were identified in 13 patients: eight were in PTPN11, three in SOS1, and one each in RIT1 and KRAS. All are known variants that have been reported in patients with NS. Of the 13 patients with identified variants, 10 had short stature, the most common feature for NS. Four of the eight patients with PTPN11 variants had atrial septal defect. Only two had pulmonary stenosis which is reported to be common for PTPN11 mutation carriers. Another two had hypertrophic cardiomyopathy, a feature which is negatively associated with PTPN11 mutations. CONCLUSIONS: Our study provides the mutation and phenotypic spectrum of NS from a new population group. The molecular testing yield of 76% is similar to other studies and shows that the targeted panel approach is useful for identifying genetic mutations in NS which has multiple causative genes. The molecular basis for the phenotypes of the remaining patients remains unknown and would need to be uncovered via sequencing of additional genes or other investigative methods.


Mutation Rate , Noonan Syndrome/genetics , Phenotype , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation, Missense , Noonan Syndrome/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins p21(ras)/genetics , SOS1 Protein/genetics , Singapore , ras Proteins/genetics
15.
Eur J Med Genet ; 61(10): 585-595, 2018 Oct.
Article En | MEDLINE | ID: mdl-29605658

Mutations in CPLANE1 (previously known as C5orf42) cause Oral-Facial-Digital Syndrome type VI (OFD6) as well as milder Joubert syndrome (JS) phenotypes. Seven new cases from five unrelated families diagnosed with pure OFD6 were systematically examined. Based on the clinical manifestations of these patients and those described in the literature, we revised the diagnostic features of OFD6 and include the seven most common characteristics: 1) molar tooth sign, 2) tongue hamartoma and/or lobulated tongue, 3) additional frenula, 4) mesoaxial polydactyly of hands, 5) preaxial polydactyly of feet, 6) syndactyly and/or bifid toe, and 7) hypothalamic hamartoma. By whole or targeted exome sequencing, we identified seven novel germline recessive mutations in CPLANE1, including missense, nonsense, frameshift and canonical splice site variants, all causing OFD6 in these patients. Since CPLANE1 is also mutated in JS patients, we examined whether a genotype-phenotype correlation could be established. We gathered and compared 46 biallelic CPLANE1 mutations reported in 32 JS and 26 OFD6 patients. Since no clear correlation between paired genotypes and clinical outcomes could be determined, we concluded that patient's genetic background and gene modifiers may modify the penetrance and expressivity of CPLANE1 causal alleles. To conclude, our study provides a comprehensive view of the phenotypic range, the genetic basis and genotype-phenotype association in OFD6 and JS. The updated phenotype scoring system together with the identification of new CPLANE1 mutations will help clinicians and geneticists reach a more accurate diagnosis for JS-related disorders.


Abnormalities, Multiple/genetics , Cerebellum/abnormalities , Eye Abnormalities/genetics , Germ-Line Mutation , Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Orofaciodigital Syndromes/genetics , Retina/abnormalities , Abnormalities, Multiple/diagnosis , Adolescent , Adult , Child , Child, Preschool , Eye Abnormalities/diagnosis , Female , Humans , Infant , Infant, Newborn , Kidney Diseases, Cystic/diagnosis , Male , Middle Aged , Orofaciodigital Syndromes/diagnosis , Penetrance
16.
Am J Med Genet A ; 176(5): 1128-1136, 2018 05.
Article En | MEDLINE | ID: mdl-29681090

Williams-Beuren syndrome (WBS) is a common microdeletion syndrome characterized by a 1.5Mb deletion in 7q11.23. The phenotype of WBS has been well described in populations of European descent with not as much attention given to other ethnicities. In this study, individuals with WBS from diverse populations were assessed clinically and by facial analysis technology. Clinical data and images from 137 individuals with WBS were found in 19 countries with an average age of 11 years and female gender of 45%. The most common clinical phenotype elements were periorbital fullness and intellectual disability which were present in greater than 90% of our cohort. Additionally, 75% or greater of all individuals with WBS had malar flattening, long philtrum, wide mouth, and small jaw. Using facial analysis technology, we compared 286 Asian, African, Caucasian, and Latin American individuals with WBS with 286 gender and age matched controls and found that the accuracy to discriminate between WBS and controls was 0.90 when the entire cohort was evaluated concurrently. The test accuracy of the facial recognition technology increased significantly when the cohort was analyzed by specific ethnic population (P-value < 0.001 for all comparisons), with accuracies for Caucasian, African, Asian, and Latin American groups of 0.92, 0.96, 0.92, and 0.93, respectively. In summary, we present consistent clinical findings from global populations with WBS and demonstrate how facial analysis technology can support clinicians in making accurate WBS diagnoses.


Biological Variation, Population , Genetic Heterogeneity , Williams Syndrome/diagnosis , Williams Syndrome/genetics , Anthropometry/methods , Facies , Humans , Phenotype , Population Groups , Reproducibility of Results , Sensitivity and Specificity , Williams Syndrome/epidemiology
17.
Am J Hum Genet ; 102(1): 116-132, 2018 01 04.
Article En | MEDLINE | ID: mdl-29290337

Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kucinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.


Arthrogryposis/genetics , Brain/embryology , Mutation/genetics , Proteins/genetics , Adolescent , Animals , Brain/diagnostic imaging , Brain/pathology , Child , Female , Gene Knockdown Techniques , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Pedigree , Zebrafish , Zebrafish Proteins/genetics
18.
J Med Genet ; 55(2): 104-113, 2018 02.
Article En | MEDLINE | ID: mdl-29097605

BACKGROUND: De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. OBJECTIVES: To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. METHODS: Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. RESULTS: We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. CONCLUSION: We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity.


DNA-Binding Proteins/genetics , Face/abnormalities , Intellectual Disability/genetics , Mutation , Transcription Factors/genetics , DNA-Binding Proteins/chemistry , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Eye Abnormalities/genetics , Female , Genetic Association Studies , Humans , Infant, Newborn , Muscle Hypotonia/etiology , Muscle Hypotonia/genetics , Pregnancy , Structural Homology, Protein , Syndrome , Transcription Factors/chemistry
19.
J Hum Genet ; 62(7): 711-715, 2017 Jul.
Article En | MEDLINE | ID: mdl-28331219

Marfan syndrome is an autosomal dominant disorder affecting mainly the skeletal, ocular and cardiovascular systems. Most cases are caused by mutations in the fibrillin-1 gene (FBN1), although there are some reports on deletions involving FBN1 and other additional genes. We report a male patient who was first evaluated at 4 years of age. Echocardiogram showed a mildly dilated aortic sinus. He also had a history of muscular ventral septal defect which was closed spontaneously and trivial mitral regurgitation. Other phenotypic features include frontal bossing, anteverted ears, joint hyperlaxity, learning disability, skin striae, and height and weight in the >97th centile but no other diagnostic findings of MFS and does not fulfill the revised Ghent criteria. Chromosomal microarray analysis showed a deletion of approximately 36.8 kb at 15q21.1, which starts in intron 6 and ends in intron 9 and includes three FBN1 exons. Sequence analysis of the breakpoint region confirmed the deletion and revealed a concomitant insertion of a retrotransposon within the intron 6/intron 9 region. The intragenic deletion of exons 7-9 was likely the result of a retrotransposition event by a MAST2-SVA element mediated by repetitive sequences.


Exons/genetics , Fibrillin-1/genetics , Sequence Deletion/genetics , Sinus of Valsalva/abnormalities , Base Sequence , Child , Child, Preschool , Dilatation, Pathologic , Humans , Male , Microarray Analysis
...