Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Trop ; 255: 107249, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740319

RESUMEN

BACKGROUND: Natural human infections by Plasmodium cynomolgi and P. inui have been reported recently and gain the substantial attention from Southeast Asian countries. Zoonotic transmission of non-human malaria parasites to humans from macaque monkeys occurred through the bites of the infected mosquitoes. The objective of this study is to establish real-time fluorescence loop-mediated isothermal amplification (LAMP) assays for the detection of zoonotic malaria parasites by combining real-time fluorescent technology with the isothermal amplification technique. METHODS: By using 18S rRNA as the target gene, the primers for P. cynomolgi, P. coatneyi and P. inui were newly designed in the present study. Four novel real-time fluorescence LAMP assays were developed for the detection of P. cynomolgi, P. coatneyi, P. inui and P. knowlesi. The entire amplification process was completed in 60 min, with the assays performed at 65 °C. By using SYTO-9 as the nucleic acid intercalating dye, the reaction was monitored via real-time fluorescence signal. RESULTS: There was no observed cross-reactivity among the primers from different species. All 70 field-collected monkey samples were successfully amplified by real-time fluorescence LAMP assays. The detection limit for P. cynomolgi, P. coatneyi and P. knowlesi was 5 × 109 copies/µL. Meanwhile, the detection limit of P. inui was 5 × 1010 copies/µL. CONCLUSION: This is the first report of the detection of four zoonotic malaria parasites by real-time fluorescence LAMP approaches. It is an effective, rapid and simple-to-use technique. This presented platform exhibits considerable potential as an alternative detection for zoonotic malaria parasites.


Asunto(s)
Malaria , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Plasmodium , ARN Ribosómico 18S , Sensibilidad y Especificidad , Zoonosis , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Malaria/diagnóstico , Malaria/parasitología , Malaria/veterinaria , ARN Ribosómico 18S/genética , Técnicas de Diagnóstico Molecular/métodos , Plasmodium/genética , Plasmodium/aislamiento & purificación , Plasmodium/clasificación , Zoonosis/parasitología , Zoonosis/diagnóstico , Humanos , Cartilla de ADN/genética , Fluorescencia , Macaca/parasitología , Enfermedades de los Monos/parasitología , Enfermedades de los Monos/diagnóstico
2.
medRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712121

RESUMEN

Introduction: Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a non-comatose, fatal case of severe knowlesi infection, but the potential impact of this malaria species on the brain remains underexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. Methods: Archived plasma samples from 19 patients with confirmed symptomatic knowlesi infection and 19 healthy, age-matched controls from Peninsular Malaysia were analysed. A total of 52 plasma biomarkers of brain injury, inflammation, and vascular activation were measured using Luminex and SIMOA assays. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. Results: Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (p<0.0001), Tau (p=0.0007), UCH-L1 (p<0.0001), αSyn (p<0.0001), Park7 (p=0.0006), NRGN (p=0.0022), and TDP-43 (p=0.005). Compared to controls, levels were lower in the infected group for BDNF (p<0.0001), CaBD (p<0.0001), CNTN1 (p<0.0001), NCAM-1 (p<0.0001), GFAP (p=0.0013), and KLK6 (p=0.0126). Hierarchical clustering revealed distinct group profiles for circulating levels of brain injury and vascular activation biomarkers. Conclusions: Our findings highlight for the first time the impact of Plasmodium knowlesi infection on the brain, with distinct alterations in cerebral injury and endothelial activation biomarker profiles compared to healthy controls. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered surrogate markers, through both neuroimaging and long-term neurocognitive assessments.

3.
Am J Trop Med Hyg ; 110(4): 648-652, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38412548

RESUMEN

Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification technique that can amplify specific nucleic acids at a constant temperature (63-65°C) within a short period (<1 hour). In this study, we report the utilization of recombinase-aided LAMP to specifically amplify the 18S sRNA of Plasmodium knowlesi. The method was built on a conventional LAMP assay by inclusion of an extra enzyme, namely recombinase, into the master mixture. With the addition of recombinase into the LAMP assay, the assay speed was executed within a time frame of less than 28 minutes at 65°C. We screened 55 P. knowlesi samples and 47 non-P. knowlesi samples. No cross-reactivity was observed for non-P. knowlesi samples, and the detection limit for recombinase-aided LAMP was one copy for P. knowlesi after LAMP amplification. It has been reported elsewhere that LAMP can be detected through fluorescent readout systems. Although such systems result in considerable limits of detection, the need for sophisticated equipment limits their use. Hence, we used here a colorimetric detection platform for the evaluation of the LAMP assay's performance. This malachite green-based recombinase-aided LAMP assay enabled visualization of results with the naked eye. Negative samples were observed by a change in color from green to colorless, whereas positive samples remained green. Our results demonstrate that the LAMP assay developed here is a convenient, sensitive, and useful diagnostic tool for the rapid detection of knowlesi malaria parasites. This method is suitable for implementation in remote healthcare settings, where centralized laboratory facilities, funds, and clinicians are in short supply.


Asunto(s)
Malaria , Plasmodium knowlesi , Humanos , Plasmodium knowlesi/genética , Malaria/diagnóstico , Malaria/parasitología , Recombinasas , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos
4.
Acta Trop ; 251: 107120, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199452

RESUMEN

Combining the advantages of PCR and LAMP, we described a new technique, namely PCR-LAMP, for malaria diagnosis. The whole process of DNA amplification can be completed in 35 min. This hybrid amplification technique markedly improved the sensitivity of detection compared to the classic single PCR or LAMP assay alone. PCR-LAMP assay had a detection limit of 1 copy/µL for P. knowlesi and P. ovale, 0.1 copy/µL for P. vivax, P. falciparum and P. malariae, respectively. To facilitate the endpoint detection, xylenol orange was added. Positive samples were indicated in orange while negative reactions were violet. The inclusion of xylenol orange into the LAMP reaction mix significantly reduces the post-amplification workload. Without relying on the use of specific instruments, the color changes of the amplicons could be visualized directly through the naked eye. In conclusion, PCR-LAMP poses the potential to be developed as a new malaria molecular diagnosis tool.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Técnicas de Diagnóstico Molecular , Fenoles , Plasmodium , Sulfóxidos , Humanos , Sensibilidad y Especificidad , Plasmodium/genética , Malaria/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Malaria Falciparum/diagnóstico , Malaria Vivax/diagnóstico , Reacción en Cadena de la Polimerasa , Plasmodium falciparum/genética , Plasmodium vivax/genética
10.
Trop Med Infect Dis ; 8(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37624327

RESUMEN

The initial and vital stage in the diagnosis of malaria involves extracting DNA. The efficiency of malaria testing is restricted by the multiple steps involved in commercial DNA extraction kits. We attempted to improve an existing loop-mediated isothermal amplification (LAMP) for the detection of Plasmodium knowlesi by using a simple DNA extraction approach, making it a feasible option for mass screening. We utilized a simple nucleic acid extraction method directly from whole blood for the detection of P. knowlesi, taking only 5 min to complete. The extracted DNA was evaluated by two fluorescent-based LAMP and one colorimetric-based LAMP assay. The detection limit for both SYTO-LAMP and SYBR green-LAMP was 0.00001% and 0.0001% parasitemia, respectively. Meanwhile, neutral red-LAMP had a detection limit of 0.01% parasitemia. Combining this simple and inexpensive DNA extraction method, SYTO-LAMP could serve as an alternative molecular diagnosis for the detection of P. knowlesi and other human Plasmodium spp.

11.
Trop Med Infect Dis ; 8(4)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37104326

RESUMEN

We propose a protocol suitable for point-of-care diagnosis of malaria utilizing a simple and purification-free DNA extraction method with the combination of loop-mediated isothermal amplification assay and lateral flow (LAMP-LF). The multiplex LAMP-LF platform developed here can simultaneously detect Plasmodium knowlesi, P. vivax, P. falciparum, and Plasmodium genus (for P. malariae and P. ovale). Through the capillary effect, the results can be observed by the red band signal on the test and control lines within 5 min. The developed multiplex LAMP-LF was tested with 86 clinical blood samples on-site at Hospital Kapit, Sarawak, Malaysia. By using microscopy as the reference method, the multiplex LAMP-LF showed 100% sensitivity (95% confidence interval (CI): 91.4 to 100.00%) and 97.8% specificity (95% CI: 88.2% to 99.9%). The high sensitivity and specificity of multiplex LAMP-LF make it ideal for use as a point-of-care diagnostic tool. The simple and purification-free DNA extraction protocol can be employed as an alternative DNA extraction method for malaria diagnosis in resource-limited settings. By combining the simple DNA extraction protocol and multiplex LAMP-LF approach, we aim to develop a simple-to-handle and easy-to-read molecular diagnostic tool for malaria in both laboratory and on-site settings.

12.
Am J Trop Med Hyg ; 108(5): 882-886, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36913921

RESUMEN

This study highlights the development of two lateral flow recombinase polymerase amplification assays for the diagnosis of human malaria. The lateral flow cassettes contained test lines that captured biotin-, 6-carboxyfluorescein, digoxigenin-, cyanine 5-, and dinitrophenyl-labeled amplicons. The overall process can be completed in 30 minutes. Recombinase polymerase amplification coupled with lateral flow had a detection limit of 1 copy/µL for Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum. No cross-reactivity was observed among nonhuman malaria parasites such as Plasmodium coatneyi, Plasmodium cynomolgi, Plasmodium brasilanium, Plasmodium inui, Plasmodium fragile, Toxoplasma gondii, Sarcocystis spp., Brugia spp., and 20 healthy donors. It is rapid, highly sensitive, robust, and easy to use. The result can be read without the need for special equipment and thus has the potential to serve as an effective alternative to polymerase chain reaction methods for the diagnosis of malaria.


Asunto(s)
Malaria , Plasmodium knowlesi , Plasmodium , Humanos , Recombinasas , Plasmodium/genética , Malaria/diagnóstico , Malaria/parasitología , Plasmodium falciparum/genética , Plasmodium vivax/genética
13.
BMC Infect Dis ; 22(1): 697, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982419

RESUMEN

BACKGROUND: High cost of commercial RNA extraction kits limits the testing efficiency of SARS-CoV-2. Here, we developed a simple nucleic acid extraction method for the detection of SARS-CoV-2 directly from nasopharyngeal swab samples. METHODS: A pH sensitive dye was used as the end point detection method. The obvious colour changes between positive and negative reactions eliminates the need of other equipment. RESULTS: Clinical testing using 260 samples showed 92.7% sensitivity (95% CI 87.3-96.3%) and 93.6% specificity (95% CI 87.3-97.4%) of RT-LAMP. CONCLUSIONS: The simple RNA extraction method minimizes the need for any extensive laboratory set-up. We suggest combining this simple nucleic acid extraction method and RT-LAMP technology as the point-of care diagnostic tool.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/virología , Prueba de COVID-19/métodos , Humanos , Técnicas de Diagnóstico Molecular/métodos , Nasofaringe/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Sistemas de Atención de Punto , ARN Viral/análisis , ARN Viral/genética , ARN Viral/aislamiento & purificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad
14.
Am J Trop Med Hyg ; 107(4): 815-819, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-35970289

RESUMEN

We developed a combination of recombinase polymerase and loop-mediated isothermal amplification methods (RAMP) for rapid screening of five human Plasmodium spp. simultaneously. RAMP is a two-stage isothermal amplification method, which consists of a first-stage recombinase polymerase amplification and a second-stage loop-mediated isothermal amplification. Under these two isothermal conditions, five Plasmodium spp. were amplified in less than 40 minutes. We demonstrated RAMP assay with 10-fold better limit of detection than a single (loop-mediated isothermal amplification) LAMP. As compared with microscopy, RAMP assay showed 100% sensitivity (95% CI: 95.65-100.00%) and 100% specificity (95% CI: 69.15-100.00%). The end products were inspected by the color changes of neutral red. Positive reactions were indicated by pink while the negative reactions remained yellow. The combination assay established in this study can be used as a routine diagnostic method for malaria.


Asunto(s)
Malaria , Plasmodium , Humanos , Malaria/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium/genética , Recombinasas , Sensibilidad y Especificidad
15.
Exp Parasitol ; 239: 108310, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35724931

RESUMEN

In order to ascertain the results of the LAMP technique, different end-point detection methods can be employed. However, these methods require sophisticated equipment. To simplify current end-point detection methods for the diagnosis of malaria, we propose the incorporation of colorimetric dyes: malachite green (MG), phenol red (PR), and xylenol orange (XO) in the LAMP assay. To evaluate the optimum concentration of dyes, 5 different concentrations (50 µM, 75 µM, 100 µM, 125 µM, and 150 µM) were used with buffer pH 8.5 and pH 8.8, respectively. The results showed that 125 µM of MG at pH 8.8 produced the most obvious colour change. A total of 71 clinical blood samples of Plasmodium knowlesi, Plasmodium malariae, Plasmodium vivax, Plasmodium falciparum, and healthy donors were tested using MG-LAMP. It showed 100% sensitivity and specificity. The simplicity and affordability of this method make it ideal to be used as an end-point detection method for malaria diagnosis in resource limited settings.


Asunto(s)
Colorimetría , Malaria , Colorantes , Humanos , Malaria/diagnóstico , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium falciparum/genética , Sensibilidad y Especificidad
16.
Malar J ; 21(1): 140, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505339

RESUMEN

Plasmodium knowlesi is a zoonotic malaria parasite that has gained increasing medical interest over the past two decades. This zoonotic parasitic infection is prevalent in Southeast Asia and causes many cases with fulminant pathology. Despite several biogeographical restrictions that limit its distribution, knowlesi malaria cases have been reported in different parts of the world due to travelling and tourism activities. Here, breakthroughs and key information generated from recent (over the past five years, but not limited to) studies conducted on P. knowlesi were reviewed, and the knowledge gap in various research aspects that need to be filled was discussed. Besides, challenges and strategies required to control and eradicate human malaria with this emerging and potentially fatal zoonosis were described.


Asunto(s)
Malaria , Plasmodium knowlesi , Animales , Asia Sudoriental/epidemiología , Humanos , Malaria/parasitología , Viaje , Zoonosis/parasitología , Zoonosis/prevención & control
17.
Int J Infect Dis ; 120: 132-134, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35472524

RESUMEN

OBJECTIVES: Preventing reverse transcription loop-mediated isothermal amplification (RT-LAMP) carryover contamination could be solved by adding deoxyuridine triphosphate (dUTP) and uracil-DNA glycosylase (UDG) into the reaction master mix. METHODS: RNA was extracted from nasopharyngeal swab samples by a simple RNA extraction method. RESULTS: Testing of 77 samples demonstrated 91.2% sensitivity (95% confidence interval [CI]: 78-98.2%) and 100% specificity (95% confidence interval: 92-100%) using UDG RT-LAMP. CONCLUSION: This colorimetric UDG RT-LAMP is a simple-to-use, fast, and easy-to-interpret method, which could serve as an alternative for diagnosis of SARS-CoV-2 infection, especially in remote hospitals and laboratories with under-equipped medical facilities.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Colorimetría , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN , ARN Viral/genética , Transcripción Reversa , SARS-CoV-2/genética , Sensibilidad y Especificidad , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
18.
Trop Med Health ; 50(1): 2, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34980275

RESUMEN

BACKGROUND: Current diagnosis of SARS-CoV-2 infection relies on RNA purification prior to amplification. Typical extraction methods limit the processing speed and turnaround time for SARS-CoV-2 diagnostic testing. METHODS: Here, we applied reverse transcription loop-mediated isothermal amplification directly onto human clinical swabs samples to amplify the RNA from SARS-CoV-2 swab samples after processing with chelating resin. RESULTS: By testing our method on 64 samples, we managed to develop an RT-LAMP assay with 95.9% sensitivity (95% CI 86 to 99.5%) and 100% specificity (95% CI 78.2-100%). CONCLUSION: The entire process including sample processing can be completed in approximately 50 min. This method has promising potential to be applied as a fast, simple and inexpensive diagnostic tool for the detection of SARS-CoV-2.

19.
BMC Infect Dis ; 21(1): 1162, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789179

RESUMEN

BACKGROUND: Current assays for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on time consuming, costly and laboratory based methods for virus isolation, purification and removing inhibitors. To address this limitation, we propose a simple method for testing RNA from nasopharyngeal swab samples that bypasses the RNA purification step. METHODS: In the current project, we have described two extraction-free reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for the detection of SARS-CoV-2 by using E gene and RdRp gene as the targets. RESULTS: Here, results showed that reverse transcription loop-mediated isothermal amplification assays with 88.4% sensitive (95% CI: 74.9-96.1%) and 67.4% sensitive (95% CI: 51.5-80.9%) for E gene and RdRp gene, respectively. CONCLUSION: Without the need of RNA purification, our developed RT-LAMP assays for direct detection of SARS-CoV-2 from nasopharyngeal swab samples could be turned into alternatives to qRT-PCR for rapid screening.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/genética , Transcripción Reversa , Sensibilidad y Especificidad
20.
Am J Trop Med Hyg ; 105(2): 375-377, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129521

RESUMEN

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Colorimetría/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , SARS-CoV-2/genética , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/normas , Colorimetría/normas , Humanos , Técnicas de Diagnóstico Molecular/normas , Nasofaringe/virología , Técnicas de Amplificación de Ácido Nucleico/normas , ARN Viral/genética , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...