Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(4): 3705-3712, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743031

RESUMEN

Different oxygen partial-pressure MgGa2O4-resistive RAMs (RRAMs) are fabricated to investigate the resistive switching behaviors. The X-ray photoelectron spectroscopy results, set voltage, reset voltage, cycling endurance, and retention time are drawn for comparison. With the increasing oxygen ratio gas flow, the resistive switching characteristics of MgGa2O4 RRAM are drastically elevated by changing the fabrication conditions of the RS layer. Moreover, we portray a filament model to explain the most likely mechanism associated with the generation and rupture of conductive filaments composed of oxygen vacancies. The formation of the interfacial layer (AlO x ) and the participation of the Joule heating effect are included to explain the highly distributed high-resistance state (HRS). The high randomness among switching cycles for memory application should be prevented, but it is suitable for the physical unclonable function. The relationship between HRS and the next time set voltage shows a strong correlation, and the conduction mechanisms of the low-resistance state (LRS) and HRS correspond to ohmic conduction and space charge-limited conduction, respectively. Meanwhile, the RRAM undergoes 10,000 s retention tests, and the two resistance states can be distinguished without obvious alternation or degradation. A favorable cycling endurance and retention time achieved by optimizing the fabrication parameters of Al/MgGa2O4/Pt RRAM have the potential for nonvolatile memristors and information security applications.

2.
RSC Adv ; 13(8): 5437-5443, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36793296

RESUMEN

The growth conditions of the AlGaN barrier in AlGaN/AlGaN deep ultra-violet (DUV) multiple quantum wells (MQWs) have crucial influences on the light output power of DUV light-emitting diodes (LEDs). The reduction of the AlGaN barrier growth rate improved the qualities of AlGaN/AlGaN MQWs, such as surface roughness and defects. The light output power enhancement could reach 83% when the AlGaN barrier growth rate was reduced from 900 nm h-1 to 200 nm h-1. In addition to the light output power enhancement, lowering the AlGaN barrier growth rate altered the far-field emission patterns of the DUV LEDs and increased the degree of polarization in the DUV LEDs. The enhanced transverse electric polarized emission indicates that the strain in AlGaN/AlGaN MQWs was modified by lowering the AlGaN barrier growth rate.

3.
ACS Omega ; 7(17): 15027-15036, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35557702

RESUMEN

AlGaN and GaN sidewalls were turned into Al x Ga2-x O3 and Ga2O3, respectively, by thermal oxidation to improve the optoelectrical characteristics of deep ultraviolet (DUV) light-emitting diodes (LEDs). The thermally oxidized Ga2O3 is a single crystal with nanosized voids homogenously distributed inside the layer. Two oxidized Al x Ga2-x O3 layers were observed on the sidewall of the AlGaN layer in transmission electron microscopy images. The first oxidized Al x Ga2-x O3 layer is a single crystal, while the second oxidized Al x Ga2-xO3 layer is a single crystal with numerous nanosized voids inside. The composition of Al in the first oxidized Al x Ga2-x O3 layer is higher than that in the second one. The thermal oxidation at high temperature degrades the quality of the p-GaN layer and increases the forward voltage from 8.18 to 11.36 V. The thermally oxidized Al x Ga2-x O3 sidewall greatly enhances the light extraction efficiency of the lateral light of the DUV LEDs by combined mechanisms of holey structure, graded refractive index, high transparency, and tensile stress. Consequently, the light output power of the DUV LEDs increases from 0.69 to 0.88 mW by introducing a 420 nm thick Al x Ga2-x O3 sidewall oxidized at 900 °C, in which the enhancement of light output power can reach 27.5%.

4.
ACS Omega ; 6(16): 10691-10697, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-34056222

RESUMEN

The stability of a resistive random-access memory (RRAM) device over long-term use has been widely acknowledged as a pertinent concern. For investigating the stability of RRAM devices, a stacked In x Ga1-x O structure is designed as its switching layer in this study. Each stacked structure in the switching layer, formed via sputtering, consists of varying contents of gallium, which is a suppressor of oxygen vacancies; thus, the oxygen vacancies are well controlled in each layer. When a stacked structure with layers of different contents is formed, the original gradients of concentration of oxygen vacancies and mobility influence the set and reset processes. With the stacked structure, an average set voltage of 0.76 V, an average reset voltage of -0.66 V, a coefficient of variation of set voltage of 0.34, and a coefficient of variation of reset voltage of 0.18 are obtained. Additionally, under DC sweeps, the stacked RRAM demonstrates a high operating life of more than 4000 cycles. In conclusion, the performance and stability of the RRAM are enhanced herein by adjusting the concentration of oxygen vacancies via different compositions of elements.

5.
ACS Omega ; 5(15): 8697-8706, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32337432

RESUMEN

Large-grained and well-oriented methylammonium lead tribromide (MAPbBr3) perovskite was formed from the conversion of amorphous lead bromide (PbBr2) doped with phenethylamine (PEA). The addition of PEA ions (with an optimized molar ratio of 0.008%) to the PbBr2 solution assisted the formation of a smooth PEA-doped PbBr2 layer by spin-coating. Then, the PEA-doped PbBr2 thin film would convert into large-grained and well-oriented MAPbBr3 with the help of a solid-vapor reaction under a vaporized methylammonium bromide (MABr) and choline chloride (CC) atmosphere. Furthermore, both PEA and CC would passivate the defects of perovskite to improve the crystal quality of perovskite. By applying this perovskite layer in perovskite light-emitting diodes (PeLEDs), the maximum luminance and current efficiency of PeLEDs could reach 20,869 cd/m2 and 3.99 cd/A, respectively; these values are approximately five and three times larger than those of PeLEDs without PEA. The perovskite converted from spin-coated PbBr2 with a PEA dopant remarkably improved the luminance and current efficiency of its PeLEDs.

6.
ACS Appl Mater Interfaces ; 11(43): 40196-40203, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31573173

RESUMEN

In this study, the impact of moisture on the electrical characteristics of an amorphous In-Ga-Zn-O thin-film transistor (a-IGZO TFT) was investigated. In commercial applications of such TFTs, high stability and quality performance in humid environments are essential. During TFT operation under ambient moisture, the electrolysis of water molecules occurs via the tip electric field effect. Hydrogen diffuses from the etch-stop layer or back-channel into the main channel under a negative electric field. The hydrogen atoms act as shallow donors (which causes the carrier concentration in the channel to rise), causing the threshold voltage (VTH) to shift in the negative direction. Hydrogen diffusion from the overlap of the source/drain and gate electrodes to the channel center caused by the tip electric field induces a significant barrier lowering and VTH shifts in a short-channel device. However, under negative bias stress (NBS) in ambient moisture, the negative VTH shift is more obvious in short- than in long-channel devices, indicating suppressed hydrogen diffusion in long-channel devices. This is attributed to the electrolysis of water by the tip electric field at the source, drain, and gate electrodes, which causes hydrogen to diffuse to the center of the channel. Here, a novel physical model of the capacitance-voltage (C-V) electrical property changes under ambient moisture is proposed, based on the early appearance of abnormalities in the C-V measurements. The electrolysis of water caused by the tip electric field and electrical abnormalities caused by hydrogen diffusion into the a-IGZO active layer are explained by this model. A secondary-ion mass spectrometry analysis shows that hydrogen content in the channel generally increases under NBS in ambient moisture. The degradation behavior due to moisture in a-IGZO is clarified. Thus, inhibiting the tip electric field may benefit future flexible-display and gas-sensing applications.

7.
ACS Nano ; 12(8): 8748-8757, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30071167

RESUMEN

Current-injected elliptical nanorod light-emitting diodes (LEDs) are demonstrated to emit polarized light with a bottom-emitting configuration. The polarization ratio of the electroluminescence reaches 3.17 when the length of the minor axis for the elliptical nanorods is as small as 150 nm. Electromagnetic simulation confirms the occurrence of the polarization selectivity especially when the length of the minor axis is down to 150 nm. Light with different polarization travels at different speeds in these asymmetric elliptical nanorods. Only one polarization experiences destructive interference between the light directly from the source and the reflected light by the top metal interface. A thin light-blocking layer is incorporated to increase the polarization selectivity. It is also not recommended to infill the gap with SiO2 since the polarization selectivity will be reduced. The proposed nanorod LEDs are fabricated using top-down nanofabrication approaches by combining nanospherical-lens lithography and two-step etch processes, which are both fully compatible with current semiconductor manufacturing processes. Results in this study will help to develop a chip-level polarization-selecting LED, which will be very useful for applications that require polarized light. It is especially beneficial for applications that are not suitable for using an external polarizer or require polarized light at the individual chip level.

8.
ACS Appl Mater Interfaces ; 10(31): 25866-25870, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-29481039

RESUMEN

This study introduces a cyclical annealing technique that enhances the reliability of amorphous indium-gallium-zinc-oxide (a-IGZO) via-type structure thin film transistors (TFTs). By utilizing this treatment, negative gate-bias illumination stress (NBIS)-induced instabilities can be effectively alleviated. The cyclical annealing provides several cooling steps, which are exothermic processes that can form stronger ionic bonds. An additional advantage is that the total annealing time is much shorter than when using conventional long-term annealing. With the use of cyclical annealing, the reliability of the a-IGZO can be effectively optimized, and the shorter process time can increase fabrication efficiency.

9.
ACS Appl Mater Interfaces ; 9(48): 41845-41854, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29134795

RESUMEN

A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiOx counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO2 and mp-Al2O3), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO2/mp-Al2O3/np-Au:NiOx as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.

10.
Opt Express ; 25(16): A777-A784, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29041045

RESUMEN

Monolithic stacked InGaN light-emitting diode (LED) connected by a polarization-enhanced GaN/AlN-based tunnel junction is demonstrated experimentally in this study. The typical stacked LEDs exhibit 80% enhancement in output power compared with conventional single LEDs because of the repeated use of electrons and holes for photon generation. The typical operation voltage of stacked LEDs is higher than twice the operation voltage of single LEDs. This high operation voltage can be attributed to the non-optimal tunneling junction in stacked LEDs. In addition to the analyses of experimental results, theoretical analysis of different schemes of tunnel junctions, including diagrams of energy bands, diagrams of electric fields, and current-voltage relation curves, are investigated using numerical simulation. The results shown in this paper demonstrate the feasibility in developing cost-effective and highly efficient tunnel-junction LEDs.

11.
Adv Mater ; 28(17): 3290-7, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26928274

RESUMEN

UNLABELLED: The successful application of a Ni/Au transparent electrode for fabricating efficient perovskite-based solar cells is demonstrated. Through interdiffusion of the Ni/Au bilayer, Au forms an interconnected metallic network structure as the transparent electrode. Ni diffuses to the bilayer surface and oxidizes into NiOx becoming an appropriate electrode interlayer. These ITO- and PEDOT: PSS-free devices have potential applications in the design of future cost-effective, low-weight, and stable solar cells.

12.
Opt Express ; 23(7): A337-45, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968799

RESUMEN

We demonstrate indium gallium nitride/gallium nitride/aluminum nitride (AlN/GaN/InGaN) multi-quantum-well (MQW) ultraviolet (UV) light-emitting diodes (LEDs) to improve light output power. Similar to conventional UV LEDs with AlGaN/InGaN MQWs, UV LEDs with AlN/GaN/InGaN MQWs have forward voltages (V(f)'s) ranging from 3.21 V to 3.29 V at 350 mA. Each emission peak wavelength of AlN/GaN/InGaN MQW UV LEDs presents 350 mA output power greater than that of the corresponding emission peak wavelength of AlGaN/InGaN MQW UV LEDs. The light output power at 350mA of AlN/GaN/InGaN MQWs UV LEDs with 375 nm emission wavelength can reach around 26.7% light output power enhancement in magnitude compared to the AlGaN/InGaN MQWs UV LEDs with same emission wavelength. But 350mA light output power of AlN/GaN/InGaN MQWs UV LEDs with emission wavelength of 395nm could only have light output power enhancement of 2.43% in magnitude compared with the same emission wavelength AlGaN/InGaN MQWs UV LEDs. Moreover, AlN/GaN/InGaN MQWs present better InGaN thickness uniformity, well/barrier interface quality and less large size pits than AlGaN/InGaN MQWs, causing AlN/GaN/InGaN MQW UV LEDs to have less reverse leakage currents at -20 V. Furthermore, AlN/GaN/InGaN MQW UV LEDs have the 2-kV human body mode (HBM) electrostatic discharge (ESD) pass yield of 85%, which is 15% more than the 2-kV HBM ESD pass yield of AlGaN/InGaN MQW UV LEDs of 70%.

13.
Opt Express ; 23(7): A401-12, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968805

RESUMEN

Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

14.
BMC Pulm Med ; 14: 115, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25022445

RESUMEN

BACKGROUND: Glutamine (GLN) has been reported to improve clinical and experimental sepsis outcomes. However, the mechanisms underlying the actions of GLN remain unclear, and may depend upon the route of GLN administration and the model of acute lung injury (ALI) used. The aim of this study was to investigate whether short-term GLN supplementation had an ameliorative effect on the inflammation induced by direct acid and lipopolysaccharide (LPS) challenge in mice. METHODS: Female BALB/c mice were divided into two groups, a control group and a GLN group (4.17% GLN supplementation). After a 10-day feeding period, ALI was induced by intratracheal administration of hydrochloric acid (pH 1.0; 2 mL/kg of body weight [BW]) and LPS (5 mg/kg BW). Mice were sacrificed 3 h after ALI challenge. In this early phase of ALI, serum, lungs, and bronchoalveolar lavage fluid (BALF) from the mice were collected for further analysis. RESULTS: The results of this study showed that ALI-challenged mice had a significant increase in myeloperoxidase activity and expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α in the lung compared with unchallenged mice. Compared with the control group, GLN pretreatment in ALI-challenged mice reduced the levels of receptor for advanced glycation end-products (RAGE) and IL-1ß production in BALF, with a corresponding decrease in their mRNA expression. The GLN group also had markedly lower in mRNA expression of cyclooxygenase-2 and NADPH oxidase-1. CONCLUSIONS: These results suggest that the benefit of dietary GLN may be partly contributed to an inhibitory effect on RAGE expression and pro-inflammatory cytokines production at an early stage in direct acid and LPS-induced ALI in mice.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Glutamina/administración & dosificación , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , ARN Mensajero/metabolismo , Receptores Inmunológicos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Animales , Líquido del Lavado Bronquioalveolar , Ciclooxigenasa 2/genética , Suplementos Dietéticos , Activación Enzimática/efectos de los fármacos , Femenino , Ácido Clorhídrico , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos , Ratones , Ratones Endogámicos BALB C , NADH NADPH Oxidorreductasas/genética , NADPH Oxidasa 1 , Peroxidasa/metabolismo , Neumonía/inducido químicamente , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
Opt Express ; 22(9): 11340-50, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921831

RESUMEN

A high-aspect-ratio metallic rod array is demonstrated to generate and propagate highly confined terahertz (THz) surface plasmonic waves under end-fire excitation. The transverse modal power distribution and spectral properties of the bound THz plasmonic wave are characterized in two metallic rod arrays with different periods and in two configurations with and without attaching a subwavelength superstrate. The integrated metallic rod array-based waveguide can be used to sense the various thin films deposited on the polypropylene superstrate based on the phase-sensitive mechanism. The sensor exhibits different phase detection sensitivities depending on the modal power immersed in the air gaps between the metallic rods. Deep-subwavelength SiO(2) and ZnO nanofilms with an optical path difference of 252 nm, which is equivalent to λ/3968 at 0.300 THz, are used as analytes to test the integrated plasmonic waveguide. Analysis of the refractive index and thickness of molecular membranes indicates that the metallic rod array-based THz waveguide can integrate various biochip platforms for minute molecular detection, which is extremely less than the coherent length of THz waves.

16.
Opt Express ; 22 Suppl 2: A396-401, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24922249

RESUMEN

We have demonstrated a gallium nitride (GaN)-based green light-emitting diode (LED) with graphene/indium tin oxide (ITO) transparent contact. The ohmic characteristic of the p-GaN and graphene/ITO contact could be preformed by annealing at 500 °C for 5 min. The specific contact resistance of p-GaN/graphene/ITO (3.72E-3 Ω·cm²) is one order less than that of p-GaN/ITO. In addition, the 20-mA forward voltage of LEDs with graphene/ITO transparent (3.05 V) is 0.09 V lower than that of ITO LEDs (3.14 V). Besides, We have got an output power enhancement of 11% on LEDs with graphene/ITO transparent contact.

17.
Opt Express ; 22 Suppl 3: A633-41, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24922371

RESUMEN

Compared with conventionally grown thin InGaN wells, thick InGaN wells with digitally grown InN/GaN exhibit superior optical properties. The activation energy (48 meV) of thick InGaN wells (generated by digital InN/GaN growth from temperature-dependent integrated photoluminescence intensity) is larger than the activation energy (25 meV) of conventionally grown thin InGaN wells. Moreover, thick InGaN wells with digitally grown InN/GaN exhibit a smaller σ value (the degree of localization effects) of 19 meV than that of conventionally grown thin InGaN wells (23 meV). Compared with green light-emitting diodes (LEDs) with conventional thin InGaN wells, the improvement in 20-A/cm² output power for LEDs containing thick InGaN wells with digitally grown InN/GaN is approximately 23%.

18.
Opt Express ; 22 Suppl 3: A663-70, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24922374

RESUMEN

The operating voltage, light output power, and efficiency droops of GaN-based light emitting diodes (LEDs) were improved by introducing Mg-doped AlGaN/InGaN superlattice (SL) electron blocking layer (EBL). The thicker InGaN layers of AlGaN/InGaN SL EBL could have a larger effective electron potential height and lower effective hole potential height than that of AlGaN EBL. This thicker InGaN layer could prevent electron leakage into the p-region of LEDs and improve hole injection efficiency to achieve a higher light output power and less efficiency droops with the injection current. The low lateral resistivity of Mg-doped AlGaN/InGaN SL would have superior current spreading at high current injection.

19.
Opt Express ; 21 Suppl 5: A864-71, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24104581

RESUMEN

GaN-based blue light-emitting diodes (LEDs) with micro truncated hexagonal pyramid (THP) array were grown on selective-area Si-implanted GaN (SIG) templates. The GaN epitaxial layer regrown on the SIG templates exhibited selective growth and subsequent lateral growth to form the THP array. The observed selective-area growth was attributed to the different crystal structures between the Si-implanted and implantation-free regions. Consequently, LEDs grown on the GaN THP array emitted broad electroluminescence spectra with multiple peaks. Spatially resolved cathodoluminescence revealed that the broad spectra originated from different areas within each THP. Transmission electron microscopy showed the GaN-based epitaxial layers, including InGaN/GaN multi-quantum wells regrown at different growth rates (or with different In content in the InGaN wells) between the semi-polar and c-face planes of each THP.

20.
Opt Lett ; 38(16): 3158-61, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24104675

RESUMEN

In blue InGaN light-emitting diodes (LEDs), the intuitive approaches to suppress Auger recombination by reducing carrier density, e.g., increasing the number of quantum wells (QWs) and thickening the width of wells, suffer from nonuniform carrier distribution and more severe spatial separation of electron and hole wave functions. To resolve this issue, LED structures with thick InGaN wells and polarization-matched AlGaInN barriers are proposed theoretically. Furthermore, the number of QWs is reduced for the purpose of mitigating the additional compressive strain in AlGaInN barriers. Simulation results reveal that, in the proposed structures, the quantum-confined Stark effect in strained wells is nearly eliminated through the utilization of polarization-matched barriers, which efficiently promotes internal quantum efficiency. Furthermore, the phenomenon of efficiency droop is also markedly improved because of the uniformly distributed or dispersed carriers, and accordingly the suppressed Auger recombination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...