Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Heart ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38768982

BACKGROUND: Researchers have developed machine learning-based ECG diagnostic algorithms that match or even surpass cardiologist level of performance. However, most of them cannot be used in real-world, as older generation ECG machines do not permit installation of new algorithms. OBJECTIVE: To develop a smartphone application that automatically extract ECG waveforms from photos and to convert them to voltage-time series for downstream analysis by a variety of diagnostic algorithms built by researchers. METHODS: A novel approach of using objective detection and image segmentation models to automatically extract ECG waveforms from photos taken by clinicians was devised. Modular machine learning models were developed to sequentially perform waveform identification, gridline removal, and scale calibration. The extracted data were then analysed using a machine learning-based cardiac rhythm classifier. RESULTS: Waveforms from 40 516 scanned and 444 photographed ECGs were automatically extracted. 12 828 of 13 258 (96.8%) scanned and 5399 of 5743 (94.0%) photographed waveforms were correctly cropped and labelled. 11 604 of 12 735 (91.1%) scanned and 5062 of 5752 (88.0%) photographed waveforms achieved successful voltage-time signal extraction after automatic gridline and background noise removal. In a proof-of-concept demonstration, an atrial fibrillation diagnostic algorithm achieved 91.3% sensitivity, 94.2% specificity, 95.6% positive predictive value, 88.6% negative predictive value and 93.4% F1 score, using photos of ECGs as input. CONCLUSION: Object detection and image segmentation models allow automatic extraction of ECG signals from photos for downstream diagnostics. This novel pipeline circumvents the need for costly ECG hardware upgrades, thereby paving the way for large-scale implementation of machine learning-based diagnostic algorithms.

2.
Postgrad Med J ; 99(1171): 476-483, 2023 Jun 08.
Article En | MEDLINE | ID: mdl-37294724

BACKGROUND: International guidelines recommend natriuretic peptide biomarker-based screening for patients at high heart failure (HF) risk to allow early detection. There have been few reports about the incorporation of screening procedure to existing clinical practice. OBJECTIVE: To implement screening of left ventricular dysfunction in patients with type 2 diabetes mellitus (DM). METHOD: A prospective screening study at the DM complication screening centre was performed. RESULTS: Between 2018 and 2019, 1043 patients (age: 63.7±12.4 years; male: 56.3%) with mean glycated haemoglobin of 7.25%±1.34% were recruited. 81.8% patients had concomitant hypertension, 31.1% had coronary artery disease, 8.0% had previous stroke, 5.5% had peripheral artery disease and 30.7% had chronic kidney disease (CKD) stages 3-5. 43 patients (4.1%) had an elevated N-terminal prohormone of brain natriuretic peptide (NT-proBNP) concentration above the age-specific diagnostic thresholds for HF, and 43 patients (4.1%) had newly detected atrial fibrillation (AF). The prevalence of elevated NT-proBNP increased with age from 0.85% in patients aged <50 years to 7.14% in those aged 70-79 years and worsening kidney function from 0.43% in patients with CKD stage 1 to 42.86% in CKD stage 5. In multivariate logistic regression, male gender (OR: 3.67 (1.47-9.16), p = 0.005*), prior stroke (OR: 3.26 (1.38-7.69), p = 0.007*), CKD (p<0.001*) and newly detected AF (OR: 7.02 (2.65-18.57), p<0.001*) were significantly associated with elevated NT-proBNP. Among patients with elevated NT-proBNP, their mean left ventricular ejection fraction (LVEF) was 51.4%±14.7%, and 45% patients had an LVEF <50%. CONCLUSION: NT-proBNP and ECG screening could be implemented with relative ease to facilitate early detection of cardiovascular complication and improve long-term outcomes.


Atrial Fibrillation , Diabetes Mellitus, Type 2 , Heart Failure , Renal Insufficiency, Chronic , Stroke , Ventricular Dysfunction, Left , Humans , Male , Middle Aged , Aged , Stroke Volume , Ventricular Function, Left , Prospective Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/etiology , Biomarkers , Stroke/etiology , Natriuretic Peptide, Brain , Peptide Fragments , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnosis
3.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article En | MEDLINE | ID: mdl-36555252

Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by MeCP2 mutations. Nonetheless, the pathophysiological roles of MeCP2 mutations in the etiology of intrinsic cardiac abnormality and sudden death remain unclear. In this study, we performed a detailed functional studies (calcium and electrophysiological analysis) and RNA-sequencing-based transcriptome analysis of a pair of isogenic RTT female patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) that expressed either MeCP2wildtype or MeCP2mutant allele and iPSC-CMs from a non-affected female control. The observations were further confirmed by additional experiments, including Wnt signaling inhibitor treatment, siRNA-based gene silencing, and ion channel blockade. Compared with MeCP2wildtype and control iPSC-CMs, MeCP2mutant iPSC-CMs exhibited prolonged action potential and increased frequency of spontaneous early after polarization. RNA sequencing analysis revealed up-regulation of various Wnt family genes in MeCP2mutant iPSC-CMs. Treatment of MeCP2mutant iPSC-CMs with a Wnt inhibitor XAV939 significantly decreased the ß-catenin protein level and CACN1AC expression and ameliorated their abnormal electrophysiological properties. In summary, our data provide novel insight into the contribution of activation of the Wnt/ß-catenin signaling cascade to the cardiac abnormalities associated with MeCP2 mutations in RTT.


Induced Pluripotent Stem Cells , Rett Syndrome , Humans , Female , Rett Syndrome/metabolism , Wnt Signaling Pathway , Myocytes, Cardiac/metabolism , Cell Line , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mutation
4.
Commun Biol ; 5(1): 867, 2022 08 25.
Article En | MEDLINE | ID: mdl-36008710

We seek to demonstrate whether therapeutic efficacy can be improved by combination of repeated intravenous administration and local transplantation of human induced pluripotential stem cell derived MSCs (hiPSC-MSCs). In this study, mice model of hind-limb ischemia is established by ligation of left femoral artery. hiPSC-MSCs (5 × 105) is intravenously administrated immediately after induction of hind limb ischemia with or without following intravenous administration of hiPSC-MSCs every week or every 3 days. Intramuscular transplantation of hiPSC-MSCs (3 × 106) is performed one week after induction of hind-limb ischemia. We compare the therapeutic efficacy and cell survival of intramuscular transplantation of hiPSC-MSCs with or without a single or repeated intravenous administration of hiPSC-MSCs. Repeated intravenous administration of hiPSC-MSCs can increase splenic regulatory T cells (Tregs) activation, decrease splenic natural killer (NK) cells expression, promote the polarization of M2 macrophages in the ischemic area and improved blood perfusion in the ischemic limbs. The improved therapeutic efficacy of MSC-based therapy is due to both increased engraftment of intramuscular transplanted hiPSC-MSCs and intravenous infused hiPSC-MSCs. In conclusion, our study support a combination of repeated systemic infusion and local transplantation of hiPSC-MSCs for cardiovascular disease.


Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Administration, Intravenous , Animals , Cell- and Tissue-Based Therapy , Humans , Induced Pluripotent Stem Cells/metabolism , Ischemia/therapy , Mesenchymal Stem Cells/metabolism , Mice
6.
JHEP Rep ; 4(1): 100389, 2022 Jan.
Article En | MEDLINE | ID: mdl-34877514

BACKGROUND & AIMS: Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism caused by loss-of-function mutations in ATP7B, which encodes a copper-transporting protein. It is characterized by excessive copper deposition in tissues, predominantly in the liver and brain. We sought to investigate whether gene-corrected patient-specific induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps) could serve as an autologous cell source for cellular transplantation therapy in WD. METHODS: We first compared the in vitro phenotype and cellular function of ATP7B before and after gene correction using CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs) in iHeps (derived from patients with WD) which were homozygous for the ATP7B R778L mutation (ATP7BR778L/R778L). Next, we evaluated the in vivo therapeutic potential of cellular transplantation of WD gene-corrected iHeps in an immunodeficient WD mouse model (Atp7b -/- / Rag2 -/- / Il2rg -/- ; ARG). RESULTS: We successfully created iPSCs with heterozygous gene correction carrying 1 allele of the wild-type ATP7B gene (ATP7BWT/-) using CRISPR/Cas9 and ssODNs. Compared with ATP7BR778L/R778L iHeps, gene-corrected ATP7BWT/- iHeps restored i n vitro ATP7B subcellular localization, its subcellular trafficking in response to copper overload and its copper exportation function. Moreover, in vivo cellular transplantation of ATP7BWT/- iHeps into ARG mice via intra-splenic injection significantly attenuated the hepatic manifestations of WD. Liver function improved and liver fibrosis decreased due to reductions in hepatic copper accumulation and consequently copper-induced hepatocyte toxicity. CONCLUSIONS: Our findings demonstrate that gene-corrected patient-specific iPSC-derived iHeps can rescue the in vitro and in vivo disease phenotypes of WD. These proof-of-principle data suggest that iHeps derived from gene-corrected WD iPSCs have potential use as an autologous ex vivo cell source for in vivo therapy of WD as well as other inherited liver disorders. LAY SUMMARY: Gene correction restored ATP7B function in hepatocytes derived from induced pluripotent stem cells that originated from a patient with Wilson's disease. These gene-corrected hepatocytes are potential cell sources for autologous cell therapy in patients with Wilson's disease.

7.
Sci Rep ; 11(1): 4388, 2021 02 23.
Article En | MEDLINE | ID: mdl-33623096

Patients infected with SARS-CoV-2 may deteriorate rapidly and therefore continuous monitoring is necessary. We conducted an observational study involving patients with mild COVID-19 to explore the potentials of wearable biosensors and machine learning-based analysis of physiology parameters to detect clinical deterioration. Thirty-four patients (median age: 32 years; male: 52.9%) with mild COVID-19 from Queen Mary Hospital were recruited. The mean National Early Warning Score 2 (NEWS2) were 0.59 ± 0.7. 1231 manual measurement of physiology parameters were performed during hospital stay (median 15 days). Physiology parameters obtained from wearable biosensors correlated well with manual measurement including pulse rate (r = 0.96, p < 0.0001) and oxygen saturation (r = 0.87, p < 0.0001). A machine learning-derived index reflecting overall health status, Biovitals Index (BI), was generated by autonomous analysis of physiology parameters, symptoms, and other medical data. Daily BI was linearly associated with respiratory tract viral load (p < 0.0001) and NEWS2 (r = 0.75, p < 0.001). BI was superior to NEWS2 in predicting clinical worsening events (sensitivity 94.1% and specificity 88.9%) and prolonged hospitalization (sensitivity 66.7% and specificity 72.7%). Wearable biosensors coupled with machine learning-derived health index allowed automated detection of clinical deterioration.


Biosensing Techniques/methods , COVID-19 , Machine Learning , Wearable Electronic Devices , Adult , Female , Humans , Male , Middle Aged , Observational Studies as Topic , Young Adult
8.
PLoS One ; 16(2): e0246732, 2021.
Article En | MEDLINE | ID: mdl-33571321

BACKGROUND: A high proportion of COVID-19 patients were reported to have cardiac involvements. Data pertaining to cardiac sequalae is of urgent importance to define subsequent cardiac surveillance. METHODS: We performed a systematic cardiac screening for 97 consecutive COVID-19 survivors including electrocardiogram (ECG), echocardiography, serum troponin and NT-proBNP assay 1-4 weeks after hospital discharge. Treadmill exercise test and cardiac magnetic resonance imaging (CMR) were performed according to initial screening results. RESULTS: The mean age was 46.5 ± 18.6 years; 53.6% were men. All were classified with non-severe disease without overt cardiac manifestations and did not require intensive care. Median hospitalization stay was 17 days and median duration from discharge to screening was 11 days. Cardiac abnormalities were detected in 42.3% including sinus bradycardia (29.9%), newly detected T-wave abnormality (8.2%), elevated troponin level (6.2%), newly detected atrial fibrillation (1.0%), and newly detected left ventricular systolic dysfunction with elevated NT-proBNP level (1.0%). Significant sinus bradycardia with heart rate below 50 bpm was detected in 7.2% COVID-19 survivors, which appeared to be self-limiting and recovered over time. For COVID-19 survivors with persistent elevation of troponin level after discharge or newly detected T wave abnormality, echocardiography and CMR did not reveal any evidence of infarct, myocarditis, or left ventricular systolic dysfunction. CONCLUSION: Cardiac abnormality is common amongst COVID-survivors with mild disease, which is mostly self-limiting. Nonetheless, cardiac surveillance in form of ECG and/or serum biomarkers may be advisable to detect more severe cardiac involvement including atrial fibrillation and left ventricular dysfunction.


COVID-19/physiopathology , Heart Diseases/physiopathology , Adult , Aged , Arrhythmias, Cardiac/blood , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/physiopathology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Electrocardiography , Female , Heart Diseases/blood , Heart Diseases/epidemiology , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prospective Studies , SARS-CoV-2/isolation & purification , Survival Analysis , Survivors , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/epidemiology , Ventricular Dysfunction, Left/physiopathology
9.
Theranostics ; 11(4): 1641-1654, 2021.
Article En | MEDLINE | ID: mdl-33408772

Rationale: Poor survival and engraftment are major hurdles of stem cell therapy in the treatment of myocardial infarction (MI). We sought to determine whether pre-transplantation systemic intravenous administration of human induced pluripotent stem cell (hiPSC)-derived mesenchymal stromal cells (hiPSC-MSCs) could improve the survival of hiPSC-MSCs or hiPSC-derived cardiomyocytes (hiPSC-CMs) following direct intramyocardial transplantation in a mouse model of MI. Methods: Mice were randomized to undergo intravenous administration of saline or 5×105 hiPSC-MSCs one week prior to MI, induced by ligation of the left anterior descending coronary artery. Mice were further assigned to undergo direct intramyocardial transplantation of hiPSC-MSCs (1×106) or hiPSC-CMs (1×106) 10 minutes following MI. Echocardiographic and invasive hemodynamic assessment were performed to determine cardiac function. In-vivo fluorescent imaging analysis, immunofluorescence staining and polymerase chain reaction were performed to detect cell engraftment. Flow cytometry of splenic regulatory T cells (Tregs) and natural killer (NK) cells was performed to assess the immunomodulatory effects. Results: Pre-transplantation systemic administration of hiPSC-MSCs increased systemic Tregs activation, decreased the number of splenic NK cells and inflammation, and enhanced survival of transplanted hiPSC-MSCs and hiPSC-CMs. These improvements were associated with increased neovascularization and decreased myocardial inflammation and apoptosis at the peri-infract zone with consequent improved left ventricular function four weeks later. Co-culture of splenic CD4 cells with hiPSC-MSCs also modulated their cytokine expression profile with a decreased level of interferon-γ, tumor necrosis factor-α, and interleukin (IL)-17A, but not IL-2, IL-6 and IL-10. Conclusion: Pre-transplantation systemic intravenous administration of hiPSC-MSCs induced immunomodulation and facilitated the survival of intramyocardially transplanted cells to improve cardiac function in MI.


Cell- and Tissue-Based Therapy/methods , Immunomodulation , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Myocardial Infarction/therapy , Animals , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Humans , Mice , Myocardial Infarction/immunology , Myocardial Infarction/pathology
10.
Stem Cell Res ; 50: 102120, 2020 Dec 10.
Article En | MEDLINE | ID: mdl-33352530

The human transcription factor NKX2-5 plays an important role in cardiac formation and development, and thus it can be used for isolation of cardiomyocytes (CMs) differentiated from human pluripotent stem cells (hPSCs). Here, we knocked-in enhanced GFP (eGFP) and Pac (a puromycin resistant gene; PuroR) into the exon 1 coding region of NKX2-5 from a human iPSC line iPSN0003 using TALENs. The generated GIBHi002-A-2 enables us to monitor and optimize cardiac differentiation procedures via the cardiac progenitor cells (CPCs), as well as to isolate iPSC-derived CMs for drug screening.

11.
Circ J ; 84(11): 2027-2031, 2020 10 23.
Article En | MEDLINE | ID: mdl-32981925

BACKGROUND: SARS-CoV-2 infection is associated with myocardial injury, but there is a paucity of experimental platforms for the condition.Methods and Results:Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected by SARS-CoV-2 for 3 days ceased beating and exhibited cytopathogenic changes with reduced viability. Active viral replication was evidenced by an increase in supernatant SARS-CoV-2 and the presence of SARS-CoV-2 nucleocaspid protein within hiPSC-CMs. Expressions of BNP, CXCL1, CXCL2, IL-6, IL-8 and TNF-α were upregulated, while ACE2 was downregulated. CONCLUSIONS: Our hiPSC-CM-based in-vitro SARS-CoV-2 myocarditis model recapitulated the cytopathogenic effects and cytokine/chemokine response. It could be exploited as a drug screening platform.


Betacoronavirus/metabolism , Coronavirus Infections/complications , Induced Pluripotent Stem Cells/virology , Myocarditis/complications , Myocytes, Cardiac/virology , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , COVID-19 , Cell Survival , Cells, Cultured , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cytokines/metabolism , Cytopathogenic Effect, Viral , Drug Evaluation, Preclinical/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Myocarditis/metabolism , Myocarditis/virology , Myocytes, Cardiac/metabolism , Nucleocapsid Proteins/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phosphoproteins , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Virus Replication
12.
J Vis Exp ; (159)2020 05 25.
Article En | MEDLINE | ID: mdl-32510509

Although advances have been achieved in the treatment of heart failure (HF) following myocardial infarction (MI), HF following MI remains one of the major causes of mortality and morbidity around the world. Cell-based therapies for cardiac repair and improvement of left ventricular function after MI have attracted considerable attention. Accordingly, the safety and efficacy of these cell transplantations should be tested in a preclinical large animal model of HF prior to clinical use. Pigs are widely used for cardiovascular disease research due to their similarity to humans in terms of heart size and coronary anatomy. Therefore, we sought to present an effective protocol for the establishment of a porcine chronic HF model using closed-chest coronary balloon occlusion of the left circumflex artery (LCX), followed by rapid ventricular pacing induced with pacemaker implantation. Eight weeks later, the stem cells were administered by intramyocardial injection in the peri-infarct area. Then the infarct size, cell survival, and left ventricular function (including echocardiography, hemodynamic parameters, and electrophysiology) were evaluated. This study helps establish a stable preclinical large animal HF model for stem cell treatment.


Heart Failure/etiology , Heart Failure/therapy , Myocardial Infarction/complications , Stem Cell Transplantation , Stem Cells/cytology , Animals , Arrhythmias, Cardiac/physiopathology , Cell Survival , Disease Models, Animal , Echocardiography , Electric Stimulation , Heart/physiopathology , Heart Failure/diagnostic imaging , Heart Failure/physiopathology , Myocardial Infarction/physiopathology , Swine , Ventricular Function, Left , Ventricular Remodeling
13.
Int J Cardiol ; 298: 85-92, 2020 01 01.
Article En | MEDLINE | ID: mdl-31668660

AIMS: To recapitulate progressive human dilated cardiomyopathy (DCM) and heart block in the Lmna R225X mutant mice model and investigate the molecular basis of LMNA mutation induced cardiac conduction disorders (CD); To investigate the potential interventional impact of exercise endurance. METHODS AND RESULTS: A Lmna R225X knock-in mice model in either heterozygous or homozygous genotype was generated. Electrical remodeling was observed with higher occurrence of AV block from neonatal and aged mutant mice as measured by surface electrocardiogram and atrio-ventricular Wenckebach point detection. Histological and molecular profiles revealed an increase in apoptotic cells and activation of caspase-3 activities in heart tissue. Upon aging, extracellular cellular matrix (ECM) remodeling appeared with accumulation of collagen in Lmna R225X mutant hearts as visualized by Masson's trichrome stain. This could be explained by the upregulated ECM gene expression, such as Fibronectin: Fn1, collagen: Col12a1, intergrin: Itgb2 and 3, as detected by microarray gene chip. Also, endurance exercise for 3 month improved the ventricular ejection fraction, attenuated fibrosis and cardiomyocytes apoptosis in the aged mutant mice. CONCLUSIONS: The mechanism of LMNA nonsense mutation induced cardiac conduction defects through AV node fibrosis is due to upregulated ECM gene expression upon activation of cardiac apoptosis. Lmna R225X mutant mice hold the potential for serving as in vivo models to explore the mechanism and therapeutic methods for AV block or myopathy associated with the aging process.


Cardiac Conduction System Disease/genetics , Cardiomyopathy, Dilated/genetics , Codon, Nonsense/genetics , Lamin Type A/genetics , Physical Conditioning, Animal/physiology , Animals , Animals, Newborn , Cardiac Conduction System Disease/metabolism , Cardiac Conduction System Disease/therapy , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/therapy , Gene Expression , Gene Knock-In Techniques/methods , Heart Rate/physiology , Lamin Type A/biosynthesis , Mice , Physical Conditioning, Animal/methods
14.
Hypertension ; 74(1): 47-55, 2019 07.
Article En | MEDLINE | ID: mdl-31132949

Emerging preclinical data suggest that splanchnic sympathetic nerve activation may play an important role in the pathophysiology of hypertension. We sought to determine the potential therapeutic application of catheter-based splanchnic denervation in a clinically relevant large animal model of hypertensive cardiomyopathy (hCMP). Sustained elevated blood pressure was induced in adult pigs using a combination of intravenous infusion of Ang II (angiotensin II) and subcutaneous implantation of deoxycorticosterone acetate pellets to establish a large animal model of hCMP. Serial changes in cardiac echocardiographic and invasive hemodynamic parameters and neurohumoral biomarkers were investigated in animals with hypertension alone (n=9) and hypertension with catheter-based splanchnic denervation (n=6). Another 6 pigs without hypertension induction served as controls. At 10 weeks, hypertensive animals developed sustained elevated blood pressure and phenotype of hCMP with significant systolic and diastolic dysfunction, and left ventricular remodeling and hypertrophy as determined by invasive hemodynamic and echocardiogram assessments, respectively, and increased venoarterial norepinephrine gradient over the myocardium, kidneys, and splanchnic organs compared with baseline. Catheter-based splanchnic denervation decreased the venoarterial norepinephrine gradient over the splanchnic organs associated with the reduced splenic sympathetic nerve innervation; attenuated the elevated blood pressure, left ventricular remodeling, and hypertrophy; and preserved left ventricular systolic and diastolic function at 20 weeks in pigs with hCMP. Our results provide novel mechanistic insight into the role of splenic sympathetic nerve innervation in hypertension and important proof-of-principle data for the therapeutic application of catheter-based splanchnic denervation in a large animal model of hCMP.


Cardiac Catheterization/methods , Cardiomyopathy, Dilated/surgery , Hypertension/surgery , Splanchnic Nerves/surgery , Sympathectomy/methods , Ventricular Remodeling/physiology , Analysis of Variance , Animals , Blood Pressure Determination , Cardiomyopathy, Dilated/physiopathology , Disease Models, Animal , Echocardiography/methods , Female , Hemodynamics , Hypertension/physiopathology , Random Allocation , Reference Values , Risk Assessment , Sus scrofa , Treatment Outcome
15.
Stem Cell Res Ther ; 10(1): 78, 2019 03 07.
Article En | MEDLINE | ID: mdl-30845990

BACKGROUND: Optimal cell type as cell-based therapies for heart failure (HF) remains unclear. We sought to compare the safety and efficacy of direct intramyocardial transplantation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) in a porcine model of HF. METHODS: Eight weeks after induction of HF with myocardial infarction (MI) and rapid pacing, animals with impaired left ventricular ejection fraction (LVEF) were randomly assigned to receive direct intramyocardial injection of saline (MI group), 2 × 108 hESC-CMs (hESC-CM group), or 2 × 108 hiPSC-MSCs (hiPSC-MSC group). The hearts were harvested for immunohistochemical evaluation after serial echocardiography and hemodynamic evaluation and ventricular tachyarrhythmia (VT) induction by in vivo programmed electrical stimulation. RESULTS: At 8 weeks post-transplantation, LVEF, left ventricular maximal positive pressure derivative, and end systolic pressure-volume relationship were significantly higher in the hiPSC-MSC group but not in the hESC-CM group compared with the MI group. The incidence of early spontaneous ventricular tachyarrhythmia (VT) episodes was higher in the hESC-CM group but the incidence of inducible VT was similar among the different groups. Histological examination showed no tumor formation but hiPSC-MSCs exhibited a stronger survival capacity by activating regulatory T cells and reducing the inflammatory cells. In vitro study showed that hiPSC-MSCs were insensitive to pro-inflammatory interferon-gamma-induced human leukocyte antigen class II expression compared with hESC-CMs. Moreover, hiPSC-MSCs also significantly enhanced angiogenesis compared with other groups via increasing expression of distinct angiogenic factors. CONCLUSIONS: Our results demonstrate that transplantation of hiPSC-MSCs is safe and does not increase proarrhythmia or tumor formation and superior to hESC-CMs for the improvement of cardiac function in HF. This is due to their immunomodulation that improves in vivo survival and enhanced angiogenesis via paracrine effects.


Heart Failure , Immunomodulation , Induced Pluripotent Stem Cells/immunology , Mesenchymal Stem Cells/immunology , Myocytes, Cardiac , Neovascularization, Physiologic/immunology , Animals , Cell Line , Disease Models, Animal , Female , Heart Failure/immunology , Heart Failure/pathology , Heart Failure/therapy , Humans , Induced Pluripotent Stem Cells/pathology , Mesenchymal Stem Cells/pathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/transplantation , Swine
16.
Sci Rep ; 8(1): 14872, 2018 10 05.
Article En | MEDLINE | ID: mdl-30291295

Empagliflozin, a sodium-glucose co-transporter (SGLT) inhibitor, reduces heart failure and sudden cardiac death but the underlying mechanisms remain elusive. In cardiomyocytes, SGLT1 and SGLT2 expression is upregulated in diabetes mellitus, heart failure, and myocardial infarction. We hypothesise that empagliflozin exerts direct effects on cardiomyocytes that attenuate diabetic cardiomyopathy. To test this hypothesis, cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were used to test the potential effects of empagliflozin on neutralization of cardiac dysfunction induced by diabetic-like cultures. Our results indicated that insulin-free high glucose culture significantly increased the size of and NPPB, SGLT1 and SGLT2 expression of hiPSC-derived cardiomyocytes. In addition, high glucose-treated hiPSC-derived cardiomyocytes exhibited reduced contractility regardless of the increased calcium transient capacity. Interestingly, application of empagliflozin before or after high glucose treatment effectively reduced the high glucose-induced cardiac abnormalities. Since application of empagliflozin did not significantly alter viability or glycolytic capacity of the hiPSC-derived cardiomyocytes, it is plausible that empagliflozin exerts its effects via the down-regulation of SGLT1, SGLT2 and GLUT1 expression. These observations provide supportive evidence that may help explain its unexpected benefit observed in the EMPA-REG trial.


Benzhydryl Compounds/pharmacology , Glucose/metabolism , Glucosides/pharmacology , Myocytes, Cardiac/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Cell Line , Cell Size/drug effects , Cells, Cultured , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Male , Myocytes, Cardiac/metabolism
17.
J Vis Exp ; (139)2018 09 15.
Article En | MEDLINE | ID: mdl-30272645

Familial hypercholesterolemia (FH) is mostly caused by low-density lipoprotein receptor (LDLR) mutations and results in an increased risk of early-onset cardiovascular disease due to marked elevation of LDL cholesterol (LDL-C) in blood. Statins are the first line of lipid-lowering drugs for treating FH and other types of hypercholesterolemia, but new approaches are emerging, in particular PCSK9 antibodies, which are now being tested in clinical trials. To explore novel therapeutic approaches for FH, either new drugs or new formulations, we need appropriate in vivo models. However, differences in the lipid metabolic profiles compared to humans are a key problem of the available animal models of FH. To address this issue, we have generated a human liver chimeric mouse model using FH induced pluripotent stem cell (iPSC)-derived hepatocytes (iHeps). We used Ldlr-/-/Rag2-/-/Il2rg-/- (LRG) mice to avoid immune rejection of transplanted human cells and to assess the effect of LDLR-deficient iHeps in an LDLR null background. Transplanted FH iHeps could repopulate 5-10% of the LRG mouse liver based on human albumin staining. Moreover, the engrafted iHeps responded to lipid-lowering drugs and recapitulated clinical observations of increased efficacy of PCSK9 antibodies compared to statins. Our human liver chimeric model could thus be useful for preclinical testing of new therapies to FH. Using the same protocol, similar human liver chimeric mice for other FH genetic variants, or mutations corresponding to other inherited liver diseases, may also be generated.


Hypercholesterolemia/diagnosis , Hyperlipoproteinemia Type II/diagnosis , Induced Pluripotent Stem Cells/metabolism , Animals , Chimera/metabolism , Disease Models, Animal , Humans , Hypercholesterolemia/pathology , Hyperlipoproteinemia Type II/pathology , Mice , Mutation
18.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2964-2972, 2017 11.
Article En | MEDLINE | ID: mdl-28754452

Dilated cardiomyopathy (DCM) is cardiac disease characterized by increased left ventricular chamber volume and decreased systolic function. DCM patient-specific human induced-pluripotent stem cells-derived cardiomyocytes (DCM-hiPSC-CMs) were generated. We found that uniaxial stretch elicited a cytosolic [Ca2+]i rise in hiPSC-CMs. Compared to control-hiPSC-CMs, DCM-hiPSC-CMs displayed a greater magnitude of [Ca2+]i responses to the cell stretch of 10-15% elongation in length. This stretch-induced [Ca2+]i rise was abolished by removal of extracellular Ca2+ and markedly attenuated by TRPV4 inhibitors HC-067047 and RN-1734. Application of nifedipine and tranilast also reduced the [Ca2+]i response but to a lesser degree. Moreover, the augmented [Ca2+]i was decreased by cytochalasin D treatment. Taken together, our study for the first time demonstrated an abnormal TRPV4-related mechanosensitive Ca2+ signaling in DCM-hiPSC-CMs.


Calcium Signaling , Calcium/metabolism , Cardiomyopathy, Dilated/metabolism , Cytosol/metabolism , Induced Pluripotent Stem Cells/metabolism , Mechanotransduction, Cellular , Myocytes, Cardiac/metabolism , TRPV Cation Channels/metabolism , Cardiomyopathy, Dilated/pathology , Cytosol/pathology , Female , Humans , Induced Pluripotent Stem Cells/pathology , Male , Myocytes, Cardiac/pathology
19.
J Am Heart Assoc ; 6(8)2017 Jul 28.
Article En | MEDLINE | ID: mdl-28754655

BACKGROUND: Precision medicine is an emerging approach to disease treatment and prevention that takes into account individual variability in the environment, lifestyle, and genetic makeup of patients. Patient-specific human induced pluripotent stem cells hold promise to transform precision medicine into real-life clinical practice. Lamin A/C (LMNA)-related cardiomyopathy is the most common inherited cardiomyopathy in which a substantial proportion of mutations in the LMNA gene are of nonsense mutation. PTC124 induces translational read-through over the premature stop codon and restores production of the full-length proteins from the affected genes. In this study we generated human induced pluripotent stem cells-derived cardiomyocytes from patients who harbored different LMNA mutations (nonsense and frameshift) to evaluate the potential therapeutic effects of PTC124 in LMNA-related cardiomyopathy. METHODS AND RESULTS: We generated human induced pluripotent stem cells lines from 3 patients who carried distinctive mutations (R225X, Q354X, and T518fs) in the LMNA gene. The cardiomyocytes derived from these human induced pluripotent stem cells lines reproduced the pathophysiological hallmarks of LMNA-related cardiomyopathy. Interestingly, PTC124 treatment increased the production of full-length LMNA proteins in only the R225X mutant, not in other mutations. Functional evaluation experiments on the R225X mutant further demonstrated that PTC124 treatment not only reduced nuclear blebbing and electrical stress-induced apoptosis but also improved the excitation-contraction coupling of the affected cardiomyocytes. CONCLUSIONS: Using cardiomyocytes derived from human induced pluripotent stem cells carrying different LMNA mutations, we demonstrated that the effect of PTC124 is codon selective. A premature stop codon UGA appeared to be most responsive to PTC124 treatment.


Cardiomyopathy, Dilated/drug therapy , Induced Pluripotent Stem Cells/drug effects , Lamin Type A/metabolism , Myocytes, Cardiac/drug effects , Oxadiazoles/pharmacology , Adult , Apoptosis/drug effects , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/physiopathology , Codon, Nonsense , Electric Stimulation , Excitation Contraction Coupling/drug effects , Frameshift Mutation , Gene Expression Regulation/drug effects , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Lamin Type A/genetics , Male , Middle Aged , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenotype
20.
Stem Cell Reports ; 8(3): 605-618, 2017 03 14.
Article En | MEDLINE | ID: mdl-28262545

Familial hypercholesterolemia (FH) causes elevation of low-density lipoprotein cholesterol (LDL-C) in blood and carries an increased risk of early-onset cardiovascular disease. A caveat for exploration of new therapies for FH is the lack of adequate experimental models. We have created a comprehensive FH stem cell model with differentiated hepatocytes (iHeps) from human induced pluripotent stem cells (iPSCs), including genetically engineered iPSCs, for testing therapies for FH. We used FH iHeps to assess the effect of simvastatin and proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies on LDL-C uptake and cholesterol lowering in vitro. In addition, we engrafted FH iHeps into the liver of Ldlr-/-/Rag2-/-/Il2rg-/- mice, and assessed the effect of these same medications on LDL-C clearance and endothelium-dependent vasodilation in vivo. Our iHep models recapitulate clinical observations of higher potency of PCSK9 antibodies compared with statins for reversing the consequences of FH, demonstrating the utility for preclinical testing of new therapies for FH patients.


Cell Differentiation , Chimera/genetics , Hepatocytes/cytology , Hepatocytes/metabolism , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/metabolism , Induced Pluripotent Stem Cells/cytology , Animals , Cholesterol, LDL/metabolism , Heterozygote , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hyperlipoproteinemia Type II/drug therapy , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Pedigree , Proprotein Convertase 9/metabolism , Receptors, LDL/genetics
...