Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
BMC Med Imaging ; 24(1): 113, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760778

BACKGROUND: Recent Convolutional Neural Networks (CNNs) perform low-error reconstruction in fast Magnetic Resonance Imaging (MRI). Most of them convolve the image with kernels and successfully explore the local information. Nonetheless, the non-local image information, which is embedded among image patches relatively far from each other, may be lost due to the limitation of the receptive field of the convolution kernel. We aim to incorporate a graph to represent non-local information and improve the reconstructed images by using the Graph Convolutional Enhanced Self-Similarity (GCESS) network. METHODS: First, the image is reconstructed into the graph to extract the non-local self-similarity in the image. Second, GCESS uses spatial convolution and graph convolution to process the information in the image, so that local and non-local information can be effectively utilized. The network strengthens the non-local similarity between similar image patches while reconstructing images, making the reconstruction of structure more reliable. RESULTS: Experimental results on in vivo knee and brain data demonstrate that the proposed method achieves better artifact suppression and detail preservation than state-of-the-art methods, both visually and quantitatively. Under 1D Cartesian sampling with 4 × acceleration (AF = 4), the PSNR of knee data reached 34.19 dB, 1.05 dB higher than that of the compared methods; the SSIM achieved 0.8994, 2% higher than the compared methods. Similar results were obtained for the reconstructed images under other sampling templates as demonstrated in our experiment. CONCLUSIONS: The proposed method successfully constructs a hybrid graph convolution and spatial convolution network to reconstruct images. This method, through its training process, amplifies the non-local self-similarities, significantly benefiting the structural integrity of the reconstructed images. Experiments demonstrate that the proposed method outperforms the state-of-the-art reconstruction method in suppressing artifacts, as well as in preserving image details.


Brain , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Humans , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Knee/diagnostic imaging , Algorithms , Artifacts
2.
IEEE Trans Med Imaging ; 41(9): 2486-2498, 2022 09.
Article En | MEDLINE | ID: mdl-35377841

Magnetic resonance imaging serves as an essential tool for clinical diagnosis, however, suffers from a long acquisition time. Sparse sampling effectively saves this time but images need to be faithfully reconstructed from undersampled data. Among the existing reconstruction methods, the structured low-rank methods have advantages in robustness to the sampling patterns and lower error. However, the structured low-rank methods use the 2D or higher dimension k-space data to build a huge block Hankel matrix, leading to considerable time and memory consumption. To reduce the size of the Hankel matrix, we proposed to separably construct multiple small Hankel matrices from rows and columns of the k-space and then constrain the low-rankness on these small matrices. This separable model can significantly reduce the computational time but ignores the correlation existed in inter- and intra-row or column, resulting in increased reconstruction error. To improve the reconstructed image without obviously increasing the computation, we further introduced the self-consistency of k-space and virtual coil prior. Besides, the proposed separable model can be extended into other imaging scenarios which hold exponential characteristics in the parameter dimension. The in vivo experimental results demonstrated that the proposed method permits the lowest reconstruction error with a fast reconstruction. The proposed approach requires only 4% of the state-of-the-art STDLR-SPIRiT runtime for parallel imaging reconstruction, and achieves the fastest computational speed in parameter imaging reconstruction.


Algorithms , Image Enhancement , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
3.
BMC Med Imaging ; 21(1): 195, 2021 12 24.
Article En | MEDLINE | ID: mdl-34952572

BACKGROUND: Magnetic resonance imaging (MRI) is an effective auxiliary diagnostic method in clinical medicine, but it has always suffered from the problem of long acquisition time. Compressed sensing and parallel imaging are two common techniques to accelerate MRI reconstruction. Recently, deep learning provides a new direction for MRI, while most of them require a large number of data pairs for training. However, there are many scenarios where fully sampled k-space data cannot be obtained, which will seriously hinder the application of supervised learning. Therefore, deep learning without fully sampled data is indispensable. MAIN TEXT: In this review, we first introduce the forward model of MRI as a classic inverse problem, and briefly discuss the connection of traditional iterative methods to deep learning. Next, we will explain how to train reconstruction network without fully sampled data from the perspective of obtaining prior information. CONCLUSION: Although the reviewed methods are used for MRI reconstruction, they can also be extended to other areas where ground-truth is not available. Furthermore, we may anticipate that the combination of traditional methods and deep learning will produce better reconstruction results.


Deep Learning , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Humans
4.
BMC Med Imaging ; 18(1): 7, 2018 05 03.
Article En | MEDLINE | ID: mdl-29724180

BACKGROUND: Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). METHODS: First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. RESULTS: Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. CONCLUSIONS: The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.


Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Contrast Media , Humans , Signal Processing, Computer-Assisted , Wavelet Analysis
5.
Magn Reson Imaging ; 43: 95-104, 2017 11.
Article En | MEDLINE | ID: mdl-28734954

Accelerating the imaging speed without sacrificing image structures plays an important role in magnetic resonance imaging. Under-sampling the k-space data and reconstructing the image with sparsity constraint is one efficient way to reduce the data acquisition time. However, achieving high acceleration factor is challenging since image structures may be lost or blurred when the acquired information is not sufficient. Therefore, incorporating extra knowledge to improve image reconstruction is expected for highly accelerated imaging. Fortunately, multi-contrast images in the same region of interest are usually acquired in magnetic resonance imaging protocols. In this work, we propose a new approach to reconstruct magnetic resonance images by learning the prior knowledge from these multi-contrast images with graph-based wavelet representations. We further formulate the reconstruction as a bi-level optimization problem to allow misalignment between these images. Experiments on realistic imaging datasets demonstrate that the proposed approach improves the image reconstruction significantly and is practical for real world application since patients are unnecessarily to stay still during successive reference image scans.


Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Contrast Media/chemistry , Humans , Models, Statistical , Software
6.
Med Image Anal ; 27: 93-104, 2016 Jan.
Article En | MEDLINE | ID: mdl-26096982

Compressed sensing magnetic resonance imaging has shown great capacity for accelerating magnetic resonance imaging if an image can be sparsely represented. How the image is sparsified seriously affects its reconstruction quality. In the present study, a graph-based redundant wavelet transform is introduced to sparsely represent magnetic resonance images in iterative image reconstructions. With this transform, image patches is viewed as vertices and their differences as edges, and the shortest path on the graph minimizes the total difference of all image patches. Using the l1 norm regularized formulation of the problem solved by an alternating-direction minimization with continuation algorithm, the experimental results demonstrate that the proposed method outperforms several state-of-the-art reconstruction methods in removing artifacts and achieves fewer reconstruction errors on the tested datasets.


Brain/anatomy & histology , Data Compression/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Wavelet Analysis , Algorithms , Computer Graphics , Computer Simulation , Image Enhancement/methods , Models, Statistical , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted
7.
Magn Reson Imaging ; 33(5): 649-58, 2015 Jun.
Article En | MEDLINE | ID: mdl-25620521

Compressed sensing MRI (CS-MRI) is a promising technology to accelerate magnetic resonance imaging. Both improving the image quality and reducing the computation time are important for this technology. Recently, a patch-based directional wavelet (PBDW) has been applied in CS-MRI to improve edge reconstruction. However, this method is time consuming since it involves extensive computations, including geometric direction estimation and numerous iterations of wavelet transform. To accelerate computations of PBDW, we propose a general parallelization of patch-based processing by taking the advantage of multicore processors. Additionally, two pertinent optimizations, excluding smooth patches and pre-arranged insertion sort, that make use of sparsity in MR images are also proposed. Simulation results demonstrate that the acceleration factor with the parallel architecture of PBDW approaches the number of central processing unit cores, and that pertinent optimizations are also effective to make further accelerations. The proposed approaches allow compressed sensing MRI reconstruction to be accomplished within several seconds.


Brain/anatomy & histology , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Humans , Phantoms, Imaging , Reproducibility of Results
...