Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Eng Mater ; 1(8): 2279-2287, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38356854

RESUMEN

Salt hydrate phase change materials are important in advancing thermal energy storage technologies for the development of renewable energies. At present, their widespread use is limited by undesired undercooling and phase separation, as well as their tendency to corrode container materials. Herein, we report a direct ink writing (DIW) additive manufacturing technique to print noncorrosive salt hydrate composites with thoroughly integrated nucleating agents and thermally conductive additives. First, salt hydrate particles are prepared from nonaqueous Pickering emulsions and then employed as rheological modifiers to formulate thixotropic inks with polymer dispersions in toluene serving as the matrix. These inks are successfully printed at room temperature and cured by solvent evaporation under ambient conditions. The resulting printed and cured composites, containing up to 70 wt % of the salt hydrate, exhibit reliable thermal cyclability for 10 cycles and suppressed undercooling compared to the bulk salt hydrate. Remarkably, the composites consistently maintain their structural integrity and thermal performance throughout the entirety of both the melting and solidification processes. We demonstrate the versatility of this approach by utilizing two salt hydrates, magnesium nitrate hexahydrate (MNH, Tm = 89 °C) and zinc nitrate hexahydrate (ZNH, Tm = 36 °C), to achieve desired thermal characteristics across a wide range of temperatures. Further, we establish that the incorporation of carbon black in these inks enhances the thermal conductivity by at least 33%. This approach consolidates the strengths of additive manufacturing and salt hydrate phase change materials to harness customizable thermal properties, well suited for targeted thermal energy management applications.

2.
J Colloid Interface Sci ; 628(Pt B): 605-613, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027771

RESUMEN

HYPOTHESIS: Encapsulation of ionic liquids (ILs) and phase change materials (PCMs) can overcome limitations associated with bulk materials, e.g., slow mass transfer rates, high viscosities, or susceptibility to external environment. Single step soft-templated encapsulation methods commonly use interfacial polymerization for shell formation, with a multifunctional monomer in the continuous phase and another in the discontinuous phase, and thus do not give pristine core material. We posit that polymer precipitation onto emulsion droplets in non-aqueous emulsions could produce a robust shell without contamination of the core, ideal for the encapsulation of water-sensitive or water-miscible materials. EXPERIMENTS: Solutions of commodity polymers were added to the continuous phase of non-aqueous Pickering emulsions stabilized by alkylated graphene oxide (GO) nanosheets such that the change in solubility of the polymer led to formation of robust shells and the production of capsules that could be isolated. FINDINGS: We demonstrate that a polymer precipitation approach can produce capsules with pristine core of the IL 1-ethyl-3-methylimidazolium hexafluorophosphate [Emim][PF6] or the salt hydrate PCM magnesium nitrate hexahydrate (MNH) and shell of nanosheets and polystyrene, poly(methyl methacrylate), or polyethylene. The capsules are approximately 80 wt% [Emim][PF6] or >90 wt% MNH, and the core can undergo multiple cycles of solidification and melting without leakage or destruction. This novel, single-step methodology provides a distinct advantage to access capsules with pristine core composition and is amenable to different core and shell, paving the way for tailoring capsule composition for desired applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...