Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 410(12): 2991-3001, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29511837

RESUMEN

A novel sample preparation technique named capsule phase microextraction (CPME) is presented here. The technique utilizes a miniaturized microextraction capsule (MEC) as the extraction medium. The MEC consists of two conjoined porous tubular polypropylene membranes, one of which encapsulates the sorbent through sol-gel technology, while the other encapsulates a magnetic metal rod. As such, MEC integrates both the extraction and stirring mechanisms into a single device. The aim of this article is to demonstrate the application potential of CPME as sample preparation technique for the extraction of a group of personal care products (PCPs) from water matrices. Among the different sol-gel sorbent materials (UCON®, poly(caprolactone-dimethylsiloxane-caprolactone) (PCAP-DMS-CAP) and Carbowax 20M (CW-20M)) evaluated, CW-20M MEC demonstrated the best extraction performance for the selected PCPs. The extraction conditions for sol-gel CW-20M MEC were optimized, including sample pH, stirring speed, addition of salt, extraction time, sample volume, liquid desorption solvent, and time. Under the optimal conditions, sol-gel CW-20M MEC provided recoveries, ranging between 47 and 90% for all analytes, except for ethylparaben, which showed a recovery of 26%. The method based on CPME with sol-gel CW-20M followed by liquid chromatography-tandem mass spectrometry was developed and validated for the extraction of PCPs from river water and effluent wastewater samples. When analyzing different environmental samples, some analytes such as 2,4-dihydroxybenzophenone, 2,2-dihydroxy-4-4 methoxybenzophenone and 3-benzophenone were found at low ng L-1.

2.
J Sep Sci ; 41(7): 1618-1624, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29280297

RESUMEN

This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 µg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Monitoreo del Ambiente , Extracción en Fase Sólida , Edulcorantes/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Cromatografía Liquida , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Ríos/química , Edulcorantes/química , Contaminantes Químicos del Agua/química
3.
J Chromatogr A ; 1456: 19-26, 2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27295962

RESUMEN

This paper describes for the first time the use of a new extraction technique, based on fabric phase sorptive extraction (FPSE). This new mode proposes the extraction of the analytes in dynamic mode in order to reduce the extraction time. Dynamic fabric phase sorptive extraction (DFPSE) followed by liquid chromatography-tandem mass spectrometry was evaluated for the extraction of a group of pharmaceuticals and personal care products (PPCPs) from environmental water samples. Different parameters affecting the extraction were optimized and best conditions were achieved when 50mL of sample at pH 3 was passed through 3 disks and analytes retained were eluted with 10mL of ethyl acetate. The recoveries were higher than 60% for most of compounds with the exception of the most polar ones (between 8% and 38%). The analytical method was validated with environmental samples such as river water and effluent and influent wastewater, and good performance was obtained. The analysis of samples revealed the presence of some PPCPs at low ngL(-1) concentrations.


Asunto(s)
Productos Domésticos/análisis , Preparaciones Farmacéuticas/aislamiento & purificación , Microextracción en Fase Sólida/métodos , Textiles , Contaminantes Químicos del Agua/aislamiento & purificación , Butileno Glicoles/química , Cromatografía Liquida , Dimetilpolisiloxanos/química , Concentración de Iones de Hidrógeno , Polietilenglicoles/química , Polímeros/química , Glicoles de Propileno/química , Ríos/química , Espectrometría de Masas en Tándem , Aguas Residuales/química
4.
Talanta ; 144: 1342-51, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26452968

RESUMEN

A new sorptive extraction technique, fabric phase sorptive extraction (FPSE), using different coating chemistries: non-polar sol-gel poly(dimethyldiphenylsiloxane) (PDMDPS), medium polar sol-gel poly(tetrahydrofuran) (PTHF), and polar sol-gel poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG triblock) and sol-gel Carbowax 20 M were evaluated to extract a group of pharmaceuticals and personal care products (PPCPs) with wide range of polarity from environmental aqueous samples. Different parameters affecting FPSE such as sample pH, stirring speed, addition of salt, extraction time, sample volume, elution solvent and desorption time were optimized for each sorbent coated FPSE media. Under optimum conditions, FPSE media coated with sol-gel Carbowax 20 M provided the highest absolute recoveries (77-85%) for majority of the analytes with the exception of the most polar ones. Nevertheless, all four sorbents offered better recovery compared to the commercially available coating for stir-bar sorptive extraction based on Ethylene Glycol/Silicone (EG/Silicone). The method based on FPSE with sol-gel Carbowax 20 M media and liquid chromatography-(electrospray ionization) tandem mass spectrometry (LC-(ESI) MS/MS) was developed and validated for environmental water samples. Good apparent recoveries (41-80%), detection limits (1-50 ng L(-1)), repeatability (%RSD<15%, n=5) and reproducibility (%RSD<18%, n=5) were achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...