Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Nat Rev Cardiol ; 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38326440

Non-anaemic iron deficiency (NAID) is a strategic target in cardiovascular medicine because of its association with a range of adverse effects in various conditions. Endeavours to tackle NAID in heart failure have yielded mixed results, exposing knowledge gaps in how best to define 'iron deficiency' and the handling of iron therapies by the body. To address these gaps, we harness the latest understanding of the mechanisms of iron homeostasis outside the erythron and integrate clinical and preclinical lines of evidence. The emerging picture is that current definitions of iron deficiency do not assimilate the multiple influences at play in patients with heart failure and, consequently, fail to identify those with a truly unmet need for iron. Additionally, current iron supplementation therapies benefit only certain patients with heart failure, reflecting differences in the nature of the unmet need for iron and the modifying effects of anaemia and inflammation on the handling of iron therapies by the body. Building on these insights, we identify untapped opportunities in the management of NAID, including the refinement of current approaches and the development of novel strategies. Lessons learned from NAID in cardiovascular disease could ultimately translate into benefits for patients with other chronic conditions such as chronic kidney disease, chronic obstructive pulmonary disease and cancer.

3.
Am J Hematol ; 98(11): 1721-1731, 2023 Nov.
Article En | MEDLINE | ID: mdl-37651649

Low hemoglobin is widely used as an indicator of iron deficiency anemia in India and other low-and-middle income counties, but anemia need not accurately reflect iron deficiency. We examined the relationship between hemoglobin and biomarkers of iron status in antenatal and postnatal period. Secondary analysis of uncomplicated singleton pregnancies in two Indian study cohorts: 1132 antenatal women in third trimester and 837 postnatal women 12-72 h after childbirth. Associations of hemoglobin with ferritin in both data sets, and with sTfR, TSAT, and hepcidin in the postnatal cohort were examined using multivariable linear regression. Multinomial logistic regression was used to examine the association between severity of anemia and iron status. Regression models were adjusted for potential confounders. Over 55% of the women were anemic; 34% of antenatal and 40% of postnatal women had low ferritin, but 4% antenatal and 6% postnatal women had high ferritin. No evidence of association between hemoglobin and ferritin was observed (antenatal: adjusted coefficient [aCoef] -0.0004, 95% confidence interval [CI] -0.001, 0.001; postnatal: aCoef -0.0001, 95% CI -0.001, 0.001). We found a significant linear association of hemoglobin with sTfR (aCoef -0.04, 95% CI -0.07, -0.01), TSAT (aCoef -0.005, 95% CI -0.008, -0.002), and hepcidin (aCoef 0.02, 95% CI 0.02, 0.03) in postnatal women. Likelihood of low ferritin was more common in anemic than non-anemic women, but high ferritin was also more common in women with severe anemia in both cohorts. Causes of anemia in pregnant and postpartum women in India are multifactorial; low hemoglobin alone is not be a useful marker of iron deficiency.


Anemia, Iron-Deficiency , Anemia , Iron Deficiencies , Female , Humans , Pregnancy , Iron , Hepcidins , Anemia/epidemiology , Anemia/complications , Anemia, Iron-Deficiency/etiology , Ferritins , Postpartum Period , Hemoglobins/analysis
4.
Arterioscler Thromb Vasc Biol ; 43(5): 713-725, 2023 05.
Article En | MEDLINE | ID: mdl-36951059

BACKGROUND: Hepcidin is a liver-derived hormone that controls systemic iron homeostasis, by inhibiting the iron exporter ferroportin in the gut and spleen, respective sites of iron absorption and recycling. Hepcidin is also expressed ectopically in the context of cardiovascular disease. However, the precise role of ectopic hepcidin in underlying pathophysiology is unknown. In patients with abdominal aortic aneurysm (AAA), hepcidin is markedly induced in smooth muscle cells (SMCs) of the aneurysm wall and inversely correlated with the expression of LCN2 (lipocalin-2), a protein implicated in AAA pathology. In addition, plasma hepcidin levels were inversely correlated with aneurysm growth, suggesting hepcidin has a potential disease-modifying role. METHODS: To probe the role of SMC-derived hepcidin in the setting of AAA, we applied AngII (Angiotensin-II)-induced AAA model to mice harbouring an inducible, SMC-specific deletion of hepcidin. To determine whether SMC-derived hepcidin acted cell-autonomously, we also used mice harboring an inducible SMC-specific knock-in of hepcidin-resistant ferroportinC326Y. The involvement of LCN2 was established using a LCN2-neutralizing antibody. RESULTS: Mice with SMC-specific deletion of hepcidin or knock-in of hepcidin-resistant ferroportinC326Y had a heightened AAA phenotype compared with controls. In both models, SMCs exhibited raised ferroportin expression and reduced iron retention, accompanied by failure to suppress LCN2, impaired autophagy in SMCs, and greater aortic neutrophil infiltration. Pretreatment with LCN2-neutralizing antibody restored autophagy, reduced neutrophil infiltration, and prevented the heightened AAA phenotype. Finally, plasma hepcidin levels were consistently lower in mice with SMC-specific deletion of hepcidin than in controls, indicating that SMC-derived hepcidin contributes to the circulating pool in AAA. CONCLUSIONS: Hepcidin elevation in SMCs plays a protective role in the setting of AAA. These findings are the first demonstration of a protective rather than deleterious role for hepcidin in cardiovascular disease. They highlight the need to further explore the prognostic and therapeutic value of hepcidin outside disorders of iron homeostasis.


Aortic Aneurysm, Abdominal , Cardiovascular Diseases , Mice , Animals , Hepcidins/genetics , Cardiovascular Diseases/metabolism , Muscle, Smooth, Vascular/metabolism , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/prevention & control , Myocytes, Smooth Muscle/metabolism , Antibodies, Neutralizing , Iron/metabolism
5.
Exp Eye Res ; 218: 108988, 2022 05.
Article En | MEDLINE | ID: mdl-35202704

Iron-induced oxidative stress can cause or exacerbate retinal degenerative diseases. Retinal iron overload has been reported in several mouse disease models with systemic or neural retina-specific knockout (KO) of homologous ferroxidases ceruloplasmin (Cp) and hephaestin (Heph). Cp and Heph can potentiate ferroportin (Fpn) mediated cellular iron export. Here, we used retina-specific Fpn KO mice to test the hypothesis that retinal iron overload in Cp/Heph DKO mice is caused by impaired iron export from neurons and glia. Surprisingly, there was no indication of retinal iron overload in retina-specific Fpn KO mice: the mRNA levels of transferrin receptor in the retina were not altered at 7-10-months age. Consistent with this, levels and localization of ferritin light chain were unchanged. To "stress the system", we injected iron intraperitoneally into Fpn KO mice with or without Cp KO. Only mice with both retina-specific Fpn KO and Cp KO had modestly elevated retinal iron levels. These results suggest that impaired iron export through Fpn is not sufficient to explain the retinal iron overload in Cp/Heph DKO mice. An increase in the levels of retinal ferrous iron caused by the absence of these ferroxidases, followed by uptake into cells by ferrous iron importers, is most likely necessary.


Cation Transport Proteins , Iron Overload , Animals , Cation Transport Proteins/genetics , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Iron/metabolism , Mice , Mice, Knockout , Retina/metabolism
6.
Semin Hematol ; 58(3): 153-160, 2021 07.
Article En | MEDLINE | ID: mdl-34389107

A full-term pregnancy comes with significant demand for iron. Not meeting this demand has adverse effects on maternal health and on the intrauterine and postnatal development of the infant. In the infant, some of these adverse effects cannot be reversed by postnatal iron supplementation, highlighting the need to tackle iron deficiency in utero. Achieving this requires sound understanding of the pathways that govern iron transfer at the fetomaternal interface. Two pathways are emerging as key players in this context; the hepcidin/ferroportin axis pathway and the iron regulatory protein (IRPs) pathway. In late gestation, suppression of maternal hepcidin, by as yet unknown factors, is required for increasing iron availability to the growing fetus. In the placenta, the rate of iron uptake by transferrin receptor TfR1 at the apical/maternal side and of iron release by ferroportin FPN at the basal/fetal side is controlled by IRP1. In fetal hepatocytes, build up of fetal iron stores requires post-translational inhibition of FPN by the cell-autonomous action of hepcidin. In the fetal liver, FPN is also subject to additional control at the transcriptional level, possibly by the action of hypoxia-inducible factor HIF2α. The rates of apical iron uptake and basal iron release in the placenta are modulated according to iron availability in the maternal blood and the placenta's own needs. This placental modulation ensures that the amount of iron delivered to the fetal circulation is maintained within a normal range, even in the face of mild maternal iron deficiency or overload. However, when maternal iron deficiency or overload are extreme, placental modulation is not sufficient to maintain normal iron supply to the fetus, resulting in fetal iron deficiency and overload respectively. Thus, the rate of iron transfer at the fetomaternal interface is subject to several regulatory signals operating simultaneously in the maternal liver, the placenta and the fetal liver. These regulatory signals act in concert to maintain normal iron supply to the fetus within a wide range of maternal iron states, but fail to do so when maternal iron deficiency or overload are extreme. The limitations of existing experimental models must be overcome if we are to gain better understanding of the role of these regulatory signals in normal and complicated pregnancy. Ultimately, that understanding could help identify better markers of fetal iron demand and underpin novel iron replacement strategies to treat maternal and fetal iron deficiency.


Iron , Mothers , Female , Fetus/metabolism , Hepcidins/metabolism , Hepcidins/pharmacology , Humans , Iron/metabolism , Maternal-Fetal Exchange , Placenta/metabolism , Pregnancy
7.
Nat Commun ; 12(1): 3447, 2021 06 08.
Article En | MEDLINE | ID: mdl-34103494

Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


Cardiovascular System/embryology , Embryo, Mammalian/pathology , Iron Deficiencies , Animals , Aorta, Thoracic/abnormalities , Biomarkers/metabolism , Cell Differentiation , Coronary Vessels/embryology , Coronary Vessels/pathology , Dietary Supplements , Edema/pathology , Embryo, Mammalian/abnormalities , Embryonic Development , Female , Gene Expression Profiling , Gene-Environment Interaction , Green Fluorescent Proteins/metabolism , Iron/metabolism , Lymphatic Vessels/embryology , Lymphatic Vessels/pathology , Mice, Inbred C57BL , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Penetrance , Phenotype , Pregnancy , Signal Transduction , Stem Cells/pathology , Transgenes , Tretinoin/metabolism
8.
Nat Metab ; 3(7): 969-982, 2021 07.
Article En | MEDLINE | ID: mdl-34155415

Colorectal cancer (CRC) requires massive iron stores, but the complete mechanisms by which CRC modulates local iron handling are poorly understood. Here, we demonstrate that hepcidin is activated ectopically in CRC. Mice deficient in hepcidin specifically in the colon tumour epithelium, compared with wild-type littermates, exhibit significantly diminished tumour number, burden and size in a sporadic model of CRC, whereas accumulation of intracellular iron by deletion of the iron exporter ferroportin exacerbates these tumour parameters. Metabolomic analysis of three-dimensional patient-derived CRC tumour enteroids indicates a prioritization of iron in CRC for the production of nucleotides, which is recapitulated in our hepcidin/ferroportin mouse CRC models. Mechanistically, our data suggest that iron chelation decreases mitochondrial function, thereby altering nucleotide synthesis, whereas exogenous supplementation of nucleosides or aspartate partially rescues tumour growth in patient-derived enteroids and CRC cell lines in the presence of an iron chelator. Collectively, these data suggest that ectopic hepcidin in the tumour epithelium establishes an axis to sequester iron in order to maintain the nucleotide pool and sustain proliferation in colorectal tumours.


Colorectal Neoplasms/metabolism , Hepcidins/metabolism , Iron/metabolism , Mitochondria/metabolism , Nucleotides/metabolism , Animals , Cell Line, Tumor , Epithelial Cells/metabolism , Humans , Mice
9.
Kidney Int ; 100(3): 559-569, 2021 09.
Article En | MEDLINE | ID: mdl-33991530

The hepcidin/ferroportin axis controls systemic iron homeostasis by regulating iron acquisition from the duodenum and reticuloendothelial system, respective sites of iron absorption and recycling. Ferroportin is also abundant in the kidney, where it has been implicated in tubular iron reabsorption. However, it remains unknown whether endogenous hepcidin regulates ferroportin-mediated iron reabsorption under physiological conditions, and whether such regulation is important for kidney and/or systemic iron homeostasis. To address these questions, we generated a novel mouse model with an inducible kidney-tubule specific knock-in of fpnC326Y, which encodes a hepcidin-resistant ferroportin termed FPNC326Y. Under conditions of normal iron availability, female mice harboring this allele had consistently decreased kidney iron but only transiently increased systemic iron indices. Under conditions of excess iron availability, male and female mice harboring this allele had milder kidney iron overload, but greater systemic iron overload relative to controls. Additionally, despite comparable systemic iron overload, kidney iron overload occurred in wild type mice fed an iron-loaded diet but not in hemochromatosis mice harboring a ubiquitous knock-in of fpnC326Y. Thus, our study demonstrates that endogenous hepcidin controls ferroportin-mediated tubular iron reabsorption under physiological conditions. It also shows that such control is important for both kidney and systemic iron homeostasis in the context of iron overload.


Hepcidins , Iron Overload , Animals , Cation Transport Proteins , Female , Hepcidins/genetics , Iron , Kidney , Male , Mice
10.
Open Heart ; 7(2)2020 10.
Article En | MEDLINE | ID: mdl-33060142

OBJECTIVES: We conducted a systematic review and meta-analysis of studies that compared levels of molecular biomarkers in women with peripartum cardiomyopathy (PPCM) to those in healthy pregnant and postpartum women to: (1) assess the evidence for prolactin (PRL) metabolism in PPCM, (2) ascertain the evidence for biomarkers of iron deficiency in PPCM, (3) identify other biomarkers associated with PPCM. METHODS: We searched Medline, Embase, Cumulated Index to Nursing and Allied Health Literature (CINAHL) and the Global Health Library from inception without language restriction for studies that compared biomarkers levels in PPCM cases to healthy controls. Pooled standardised mean difference (SMD) was generated using a random effects model for the difference in levels of biomarkers. RESULTS: Two studies assessed the association of PRL with PPCM, and reported that PPCM cases have higher levels of total PRL. No studies investigated iron metabolism in PPCM. Other biomarkers associated with PPCM included serum levels of natriuretic peptides (SMD=3.77, 95% CI 0.71 to 6.82), albumin (SMD=-0.67, 95% CI -1.01 to -0.32), C-reactive protein (SMD=1.67, 95% CI 0.22 to 3.12), selenium (SMD=-0.73, 95% CI -1.58 to 0.12), cardiac troponins (SMD=1.06, 95% CI 0.33 to 1.80), creatinine (SMD=0.51, 95% CI 0.33 to 0.69), white bloodcells (SMD=0.44, 95 % CI 0.07 to 0.82), haemoglobin (SMD=-0.45, 95% CI -0.64 to-0.26). CONCLUSIONS: More robust molecular studies are needed to explore the association between prolactin and PPCM in human subjects and to determine the extent to which iron deficiency (with or without anaemia) contributes to the risk of PPCM.


Anemia, Iron-Deficiency/blood , Cardiomyopathies/blood , Iron Deficiencies , Pregnancy Complications, Cardiovascular/blood , Prolactin/blood , Anemia, Iron-Deficiency/diagnosis , Anemia, Iron-Deficiency/epidemiology , Biomarkers/blood , Cardiomyopathies/diagnosis , Cardiomyopathies/epidemiology , Female , Heart Disease Risk Factors , Humans , Iron/blood , Peripartum Period/blood , Pregnancy , Pregnancy Complications, Cardiovascular/diagnosis , Pregnancy Complications, Cardiovascular/epidemiology , Prognosis , Risk Assessment
11.
Blood ; 136(13): 1549-1557, 2020 09 24.
Article En | MEDLINE | ID: mdl-32542311

In the adult, the liver-derived hormone hepcidin (HAMP) controls systemic iron levels by blocking the iron-exporting protein ferroportin (FPN) in the gut and spleen, the sites of iron absorption and recycling, respectively. Impaired HAMP expression or FPN responsiveness to HAMP result in iron overload. HAMP is also expressed in the fetal liver but its role in controlling fetal iron stores is not understood. To address this question in a manner that safeguards against the confounding effects of altered maternal iron homeostasis, we generated fetuses harboring a paternally-inherited ubiquitous knock-in of the HAMP-resistant fpnC326Y. Additionally, to safeguard against any confounding effects of altered placental iron homeostasis, we generated fetuses with a liver-specific knock-in of fpnC326Y or knockout of the hamp gene. These fetuses had reduced liver iron stores and hemoglobin, and markedly increased FPN in the liver, but not in the placenta. Thus, fetal liver HAMP operates cell-autonomously to increase fetal liver iron stores. Our findings also suggest that FPN in the placenta is not actively regulated by fetal liver HAMP under normal physiological conditions.


Hepcidins/metabolism , Iron/metabolism , Liver/embryology , Animals , Cation Transport Proteins/metabolism , Female , Hemoglobins/metabolism , Liver/metabolism , Male , Mice , Pregnancy
12.
Science ; 368(6487): 186-189, 2020 04 10.
Article En | MEDLINE | ID: mdl-32273468

Bleeding and altered iron distribution occur in multiple gastrointestinal diseases, but the importance and regulation of these changes remain unclear. We found that hepcidin, the master regulator of systemic iron homeostasis, is required for tissue repair in the mouse intestine after experimental damage. This effect was independent of hepatocyte-derived hepcidin or systemic iron levels. Rather, we identified conventional dendritic cells (cDCs) as a source of hepcidin that is induced by microbial stimulation in mice, prominent in the inflamed intestine of humans, and essential for tissue repair. cDC-derived hepcidin acted on ferroportin-expressing phagocytes to promote local iron sequestration, which regulated the microbiota and consequently facilitated intestinal repair. Collectively, these results identify a pathway whereby cDC-derived hepcidin promotes mucosal healing in the intestine through means of nutritional immunity.


Dendritic Cells/metabolism , Gastrointestinal Microbiome , Hepcidins/metabolism , Intestinal Diseases/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiology , Iron/metabolism , Animals , Cation Transport Proteins/metabolism , Fecal Microbiota Transplantation , Gene Deletion , Hepcidins/genetics , Homeostasis , Mice , Mice, Mutant Strains , Phagocytes/metabolism
13.
Front Cardiovasc Med ; 7: 617038, 2020.
Article En | MEDLINE | ID: mdl-33585583

Fully-activated Na+/H+ exchanger-1 (NHE1) generates the cardiomyocyte's largest trans-membrane extrusion of H+ ions for an equimolar influx of Na+ ions. This has the desirable effect of clearing excess intracellular acidity, but comes at a large energetic premium because the exchanged Na+ ions must ultimately be extruded by the sodium pump, a process that consumes the majority of the heart's non-contractile ATP. We hypothesize that the state of NHE1 activation depends on metabolic resources, which become limiting in periods of myocardial hypoxia. To test this functionally, NHE1 activity was measured in response to in vitro and in vivo hypoxic treatments. NHE1 flux was interrogated as a function of intracellular pH by fluorescence imaging of rodent ventricular myocytes loaded with pH-sensitive dyes BCECF or cSNARF1. Anoxic superfusates promptly inhibited NHE1, tracking the time-course of mitochondrial depolarization. Mass spectrometry of NHE1 immuno-precipitated from Langendorff-perfused anoxic hearts identified Tyr-581 dephosphorylation and Tyr-561 phosphorylation. The latter residue is part of the domain that interacts with phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane lipid that becomes depleted under metabolic inhibition. Tyr-561 phosphorylation is expected to electrostatically weaken this activatory interaction. To test if a period of hypoxia produces a persistent inhibition of NHE1, measurements under normoxia were performed on myocytes that had been incubated in 2% O2 for 4 h. NHE1 activity remained inhibited, but the effect was ablated in the presence of Dasatinib, an inhibitor of Abl/Src-family tyrosine kinases. Chronic tissue hypoxia in vivo, attained in a mouse model of anemic hypoxia, also resulted in persistently slower NHE1. In summary, we show that NHE1 responds to oxygen, a physiologically-relevant metabolic regulator, ostensibly to divert ATP for contraction. We describe a novel mechanism of NHE1 inhibition that may be relevant in cardiac disorders featuring altered oxygen metabolism, such as myocardial ischemia and reperfusion injury.

14.
Front Cardiovasc Med ; 7: 616920, 2020.
Article En | MEDLINE | ID: mdl-33553263

Iron deficiency is the most prevalent micronutrient disorder globally. When severe, iron deficiency leads to anemia, which can be deleterious to cardiac function. Given the central role of iron and oxygen in cardiac biology, multiple pathways are expected to be altered in iron-deficiency anemia, and identifying these requires an unbiased approach. To investigate these changes, gene expression and metabolism were studied in mice weaned onto an iron-deficient diet for 6 weeks. Whole-exome transcriptomics (RNAseq) identified over 1,500 differentially expressed genes (DEGs), of which 22% were upregulated and 78% were downregulated in the iron-deficient group, relative to control animals on an iron-adjusted diet. The major biological pathways affected were oxidative phosphorylation and pyruvate metabolism, as well as cardiac contraction and responses related to environmental stress. Cardiac metabolism was studied functionally using in vitro and in vivo methodologies. Spectrometric measurement of the activity of the four electron transport chain complexes in total cardiac lysates showed that the activities of Complexes I and IV were reduced in the hearts of iron-deficient animals. Pyruvate metabolism was assessed in vivo using hyperpolarized 13C magnetic resonance spectroscopy (MRS) of hyperpolarized pyruvate. Hearts from iron-deficient and anemic animals showed significantly decreased flux through pyruvate dehydrogenase and increased lactic acid production, consistent with tissue hypoxia and induction of genes coding for glycolytic enzymes and H+-monocarboxylate transport-4. Our results show that iron-deficiency anemia results in a metabolic remodeling toward a glycolytic, lactic acid-producing phenotype, a hallmark of hypoxia.

15.
Pharmaceuticals (Basel) ; 12(3)2019 Aug 28.
Article En | MEDLINE | ID: mdl-31466321

Iron deficiency is the most common nutritional disorder in the world. It is prevalent amongst patients with cardiovascular disease, in whom it is associated with worse clinical outcomes. The benefits of iron supplementation have been established in chronic heart failure, but data on their effectiveness in other cardiovascular diseases are lacking or conflicting. Realising the potential of iron therapies in cardiovascular disease requires understanding of the mechanisms through which iron deficiency affects cardiovascular function, and the cell types in which such mechanisms operate. That understanding has been enhanced by recent insights into the roles of hepcidin and iron regulatory proteins (IRPs) in cellular iron homeostasis within cardiovascular cells. These studies identify intracellular iron deficiency within the cardiovascular tissue as an important contributor to the disease process, and present novel therapeutic strategies based on targeting the machinery of cellular iron homeostasis rather than direct iron supplementation. This review discusses these new insights and their wider implications for the treatment of cardiovascular diseases, focusing on two disease conditions: chronic heart failure and pulmonary arterial hypertension.

16.
Exp Eye Res ; 187: 107728, 2019 10.
Article En | MEDLINE | ID: mdl-31323276

Retinal iron accumulation has been implicated in the pathogenesis of age-related macular degeneration (AMD) and other neurodegenerative diseases. The retina and the brain are protected from the systemic circulation by the blood retinal barrier (BRB) and blood brain barrier (BBB), respectively. Iron levels within the retina and brain need to be tightly regulated to prevent oxidative injury. The method of iron entry through the retina and brain vascular endothelial cells (r&bVECs), an essential component of the BRB and BBB, is not fully understood. However, localization of the cellular iron exporter, ferroportin (Fpn), to the abluminal membrane of these cells, leads to the hypothesis that Fpn may play an important role in the import of iron across the BRB and BBB. To test this hypothesis, a mouse model with deletion of Fpn within the VECs in both the retina and the brain was developed through tail vein injection of AAV9-Ple261(CLDN5)-icre to both experimental Fpnf/f, and control Fpn+/+ mice at P21. Mice were aged to 9 mo and changes in retinal and brain iron distribution were observed. In vivo fundus imaging and quantitative serum iron detection were used for model validation. Eyes and brains were collected for immunofluorescence. Deletion of Fpn from the retinal and brain VECs leads to ferritin-L accumulation, an indicator of elevated iron levels, in the retinal and brain VECs. This occurred despite lower serum iron levels in the experimental mice. This result suggests that Fpn normally transfers iron from retinal and brain VECs into the retina and brain. These results help to better define the method of retina and brain iron import and will increase understanding of neurodegenerative diseases involving iron accumulation.


Cation Transport Proteins/metabolism , Cerebrovascular Circulation/physiology , Endothelial Cells/metabolism , Ferritins/metabolism , Retinal Vessels/metabolism , Animals , Biological Transport , Blood-Brain Barrier , Blood-Retinal Barrier , Claudin-5/genetics , Dependovirus/genetics , Fluorescent Antibody Technique, Indirect , Iron/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Real-Time Polymerase Chain Reaction
17.
Am J Pathol ; 189(9): 1814-1830, 2019 09.
Article En | MEDLINE | ID: mdl-31287995

The liver secretes hepcidin (Hepc) into the bloodstream to reduce blood iron levels. Hepc accomplishes this by triggering degradation of the only known cellular iron exporter ferroportin in the gut, macrophages, and liver. We previously demonstrated that systemic Hepc knockout (HepcKO) mice, which have high serum iron, develop retinal iron overload and degeneration. However, it was unclear whether this is caused by high blood iron levels or, alternatively, retinal iron influx that would normally be regulated by retina-produced Hepc. To address this question, retinas of liver-specific and retina-specific HepcKO mice were studied. Liver-specific HepcKO mice had elevated blood and retinal pigment epithelium (RPE) iron levels and increased free (labile) iron levels in the retina, despite an intact blood-retinal barrier. This led to RPE hypertrophy associated with lipofuscin-laden lysosome accumulation. Photoreceptors also degenerated focally. In contrast, there was no change in retinal or RPE iron levels or degeneration in the retina-specific HepcKO mice. These data indicate that high blood iron levels can lead to retinal iron accumulation and degeneration. High blood iron levels can occur in patients with hereditary hemochromatosis or result from use of iron supplements or multiple blood transfusions. Our results suggest that high blood iron levels may cause or exacerbate retinal disease.


Hepcidins/physiology , Iron Overload/etiology , Iron/metabolism , Liver/metabolism , Retina/metabolism , Retinal Degeneration/etiology , Animals , Blood-Retinal Barrier , Female , Iron Overload/metabolism , Iron Overload/pathology , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Retina/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology
18.
Proc Natl Acad Sci U S A ; 116(26): 13122-13130, 2019 06 25.
Article En | MEDLINE | ID: mdl-31152133

Iron deficiency augments hypoxic pulmonary arterial pressure in healthy individuals and exacerbates pulmonary arterial hypertension (PAH) in patients, even without anemia. Conversely, iron supplementation has been shown to be beneficial in both settings. The mechanisms underlying the effects of iron availability are not known, due to lack of understanding of how cells of the pulmonary vasculature respond to changes in iron levels. The iron export protein ferroportin (FPN) and its antagonist peptide hepcidin control systemic iron levels by regulating release from the gut and spleen, the sites of absorption and recycling, respectively. We found FPN to be present in pulmonary arterial smooth muscle cells (PASMCs) and regulated by hepcidin cell autonomously. To interrogate the importance of this regulation, we generated mice with smooth muscle-specific knock in of the hepcidin-resistant isoform fpn C326Y. While retaining normal systemic iron levels, this model developed PAH and right heart failure as a consequence of intracellular iron deficiency and increased expression of the vasoconstrictor endothelin-1 (ET-1) within PASMCs. PAH was prevented and reversed by i.v. iron and by the ET receptor antagonist BQ-123. The regulation of ET-1 by iron was also demonstrated in healthy humans exposed to hypoxia and in PASMCs from PAH patients with mutations in bone morphogenetic protein receptor type II. Such mutations were further associated with dysregulation of the HAMP/FPN axis in PASMCs. This study presents evidence that intracellular iron deficiency specifically within PASMCs alters pulmonary vascular function. It offers a mechanistic underpinning for the known effects of iron availability in humans.


Iron Deficiencies , Myocytes, Smooth Muscle/pathology , Pulmonary Arterial Hypertension/etiology , Pulmonary Artery/pathology , Administration, Intravenous , Animals , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Disease Models, Animal , Endothelin A Receptor Antagonists/administration & dosage , Endothelin-1/metabolism , Gene Knock-In Techniques , Hepcidins/metabolism , Humans , Iron/administration & dosage , Male , Mice , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/prevention & control , Pulmonary Artery/cytology , Pulmonary Artery/metabolism , Receptor, Endothelin A/metabolism , Up-Regulation
19.
JCI Insight ; 4(7)2019 04 04.
Article En | MEDLINE | ID: mdl-30779710

Iron deficiency is present in ~50% of heart failure (HF) patients. Large multicenter trials have shown that treatment of iron deficiency with i.v. iron benefits HF patients, but the underlying mechanisms are not known. To investigate the actions of iron deficiency on the heart, mice were fed an iron-depleted diet, and some received i.v. ferric carboxymaltose (FCM), an iron supplementation used clinically. Iron-deficient animals became anemic and had reduced ventricular ejection fraction measured by magnetic resonance imaging. Ca2+ signaling, a pathway linked to the contractile deficit in failing hearts, was also significantly affected. Ventricular myocytes isolated from iron-deficient animals produced smaller Ca2+ transients from an elevated diastolic baseline but had unchanged sarcoplasmic reticulum (SR) Ca2+ load, trigger L-type Ca2+ current, or cytoplasmic Ca2+ buffering. Reduced fractional release from the SR was due to downregulated RyR2 channels, detected at protein and message levels. The constancy of diastolic SR Ca2+ load is explained by reduced RyR2 permeability in combination with right-shifted SERCA activity due to dephosphorylation of its regulator phospholamban. Supplementing iron levels with FCM restored normal Ca2+ signaling and ejection fraction. Thus, 2 Ca2+-handling proteins previously implicated in HF become functionally impaired in iron-deficiency anemia, but their activity is rescued by i.v. iron supplementation.


Anemia, Iron-Deficiency/pathology , Heart Failure/etiology , Myocardial Contraction , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Administration, Intravenous , Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/complications , Anemia, Iron-Deficiency/drug therapy , Animals , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Cells, Cultured , Disease Models, Animal , Down-Regulation , Ferric Compounds/administration & dosage , Heart Failure/diagnosis , Heart Failure/prevention & control , Humans , Iron/blood , Magnetic Resonance Imaging , Male , Maltose/administration & dosage , Maltose/analogs & derivatives , Mice , Myocardium/cytology , Myocardium/pathology , Myocytes, Cardiac , Primary Cell Culture , Sarcoplasmic Reticulum/pathology , Stroke Volume
20.
Free Radic Biol Med ; 133: 234-237, 2019 03.
Article En | MEDLINE | ID: mdl-30107217

Heart disease is a common manifestation in conditions of iron imbalance. Normal heart function requires coupling of iron supply for oxidative phosphorylation and redox signalling with tight control of intracellular iron to below levels at which excessive ROS are generated. Iron supply to the heart is dependent on systemic iron availability which is controlled by the systemic hepcidin/ferroportin axis. Intracellular iron in cardiomyocytes is controlled in part by the iron regulatory proteins IRP1/2. This mini-review summarises current understanding of how cardiac cells regulate intracellular iron levels, and of the mechanisms linking cardiac dysfunction with iron imbalance. It also highlights a newly-recognised mechanism of intracellular iron homeostasis in cardiomyocytes, based on a cell-autonomous cardiac hepcidin/ferroportin axis. This new understanding raises pertinent questions on the interplay between systemic and local iron control in the context of heart disease, and the effects on heart function of therapies targeting the systemic hepcidin/ferroportin axis.


Cardiovascular Physiological Phenomena , Heart Diseases/metabolism , Iron/metabolism , Animals , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Heart/physiopathology , Heart Diseases/pathology , Hepcidins/genetics , Hepcidins/metabolism , Homeostasis/genetics , Humans , Iron Regulatory Protein 1/genetics , Iron Regulatory Protein 1/metabolism , Iron Regulatory Protein 2/genetics , Iron Regulatory Protein 2/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
...