Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 10(5): e15206, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35274831

RESUMEN

Loss of nephron primary cilia due to disruption of the Ift88 gene results in sex- and age-specific phenotypes involving renal cystogenesis, blood pressure (BP) and urinary Na+ excretion. Previous studies demonstrated that male mice undergoing induction of nephron-specific Ift88 gene disruption at 2 months of age developed reduced BP and increased salt-induced natriuresis when pre-cystic (2 months post-induction) and became hypertensive associated with frankly cystic kidneys by 9 months post-induction; in contrast, female Ift88 KO mice manifested no unique phenotype 2 months post-induction and had mildly reduced BP 9 months post-induction. The current study utilized these Ift88 KO mice to investigate associated changes in renal Na+ transporter and channel protein expression. At 2 months post-induction, pre-cystic male Ift88 KO mice had reduced high salt diet associated total NKCC2 levels while female mice had no alterations in Na+ transporters or channels. At 9 months post-induction, cystic male Ift88 KO mice had increased total and phosphorylated NHE3 levels together with reduced NKCC2, phosphorylated and/or total NCC, and ENaC-α expression on normal and high salt diets. In contrast, female Ift88 KO mice at 9 months post-induction had no changes in Na+ transporters or channels beyond an increase in phosphorylated-NCC during high salt intake. Thus, reduced BP in pre-cystic, and elevated BP in renal cystic, male Ift88 KO mice are associated with unique sex-dependent changes in nephron Na+ transporter/channel expression.


Asunto(s)
Quistes , Hipertensión , Animales , Presión Sanguínea/fisiología , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Nefronas/metabolismo , Sodio/metabolismo , Cloruro de Sodio Dietético/metabolismo
2.
J Am Soc Nephrol ; 32(9): 2210-2222, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34045314

RESUMEN

BACKGROUND: Primary cilia regulation of renal function and BP in health and disease is incompletely understood. This study investigated the effect of nephron ciliary loss on renal physiology, BP, and ensuing cystogenesis. METHODS: Mice underwent doxycycline (DOX)-inducible nephron-specific knockout (KO) of the Ift88 gene at 2 months of age using a Cre-LoxP strategy. BP, kidney function, and renal pathology were studied 2 and 9 months after DOX (Ift88 KO) or vehicle (control). RESULTS: At 2 months post-DOX, male, but not female, Ift88 KO, compared with sex-matched control, mice had reduced BP, enhanced salt-induced natriuresis, increased urinary nitrite and nitrate (NOx) excretion, and increased kidney NOS3 levels, which localized to the outer medulla; the reductions in BP in male mice were prevented by L-NAME. At 9 months post-DOX, male, but not female, Ift88 KO mice had polycystic kidneys, elevated BP, and reduced urinary NOx excretion. No differences were observed in plasma renin concentration, plasma aldosterone, urine vasopressin, or urine PGE2 between Ift88 KO and control mice at 2 or 9 months post-DOX. CONCLUSIONS: Nephron cilia disruption in male, but not female, mice (1) reduces BP prior to cyst formation, (2) increases NOx production that may account for the lower BP prior to cyst formation, and (3) induces polycystic kidneys that are associated with hypertension and reduced renal NO production.


Asunto(s)
Presión Sanguínea/fisiología , Nefronas/fisiopatología , Enfermedades Renales Poliquísticas/etiología , Proteínas Supresoras de Tumor/genética , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Natriuresis , Nitratos/orina , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitritos/orina , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/patología , Factores Sexuales
3.
J Am Soc Nephrol ; 31(7): 1555-1568, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32487560

RESUMEN

BACKGROUND: The physiologic role of renomedullary interstitial cells, which are uniquely and abundantly found in the renal inner medulla, is largely unknown. Endothelin A receptors regulate multiple aspects of renomedullary interstitial cell function in vitro. METHODS: To assess the effect of targeting renomedullary interstitial cell endothelin A receptors in vivo, we generated a mouse knockout model with inducible disruption of renomedullary interstitial cell endothelin A receptors at 3 months of age. RESULTS: BP and renal function were similar between endothelin A receptor knockout and control mice during normal and reduced sodium or water intake. In contrast, on a high-salt diet, compared with control mice, the knockout mice had reduced BP; increased urinary sodium, potassium, water, and endothelin-1 excretion; increased urinary nitrite/nitrate excretion associated with increased noncollecting duct nitric oxide synthase-1 expression; increased PGE2 excretion associated with increased collecting duct cyclooxygenase-1 expression; and reduced inner medullary epithelial sodium channel expression. Water-loaded endothelin A receptor knockout mice, compared with control mice, had markedly enhanced urine volume and reduced urine osmolality associated with increased urinary endothelin-1 and PGE2 excretion, increased cyclooxygenase-2 protein expression, and decreased inner medullary aquaporin-2 protein content. No evidence of endothelin-1-induced renomedullary interstitial cell contraction was observed. CONCLUSIONS: Disruption of renomedullary interstitial cell endothelin A receptors reduces BP and increases salt and water excretion associated with enhanced production of intrinsic renal natriuretic and diuretic factors. These studies indicate that renomedullary interstitial cells can modulate BP and renal function under physiologic conditions.


Asunto(s)
Presión Sanguínea , Médula Renal/fisiología , Receptor de Endotelina A/fisiología , Aldosterona/sangre , Animales , Arginina Vasopresina/orina , Calcio/metabolismo , Diuresis/efectos de los fármacos , Endotelina-1/farmacología , Endotelina-1/orina , Canales Epiteliales de Sodio/metabolismo , Femenino , Genotipo , Tasa de Filtración Glomerular , Ácido Hialurónico/metabolismo , Médula Renal/citología , Médula Renal/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Natriuresis/efectos de los fármacos , Nitratos/orina , Nitritos/orina , Potasio/orina , ARN Mensajero/metabolismo , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Sodio/orina , Cloruro de Sodio Dietético/administración & dosificación , Tamoxifeno/farmacología , Agua/administración & dosificación , Agua/metabolismo
4.
J Am Soc Nephrol ; 31(6): 1243-1254, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32300065

RESUMEN

BACKGROUND: Hypertension often occurs before renal function deteriorates in autosomal dominant polycystic kidney disease (ADPKD). It is unknown whether the Pkd1 gene product polycystin-1-the predominant causal factor in ADPKD-itself contributes to ADPKD hypertension independent of cystogenesis. METHODS: We induced nephron-specific disruption of the Pkd1 gene in 3-month-old mice and examined them at 4-5 months of age. RESULTS: Kidneys from the Pkd1 knockout mice showed no apparent renal cysts, tubule dilation, or increased cell proliferation. Compared with control mice, Pkd1 knockout mice exhibited reduced arterial pressure during high salt intake; this associated with an increased natriuretic, diuretic, and kaliuretic response during the first 2-3 days of salt loading. The lower arterial pressure and enhanced natriuresis during high salt loading in Pkd1 knockout mice were associated with lower urinary nitrite/nitrate excretion and markedly increased urinary PGE2 excretion, whereas GFR, plasma renin concentration, and urinary endothelin-1 excretion were similar between knockout and control mice. Kidney cyclooxygenase-2 protein levels were increased in Pkd1 knockout mice during high salt intake; administration of NS-398, a selective cyclooxygenase-2 inhibitor, abolished the arterial pressure difference between the knockout and control mice during high salt intake. Total kidney Na+/K+/2Cl- cotransporter isoform 2 (NKCC2) levels were greatly reduced in Pkd1 knockout mice fed a high salt diet compared with controls. CONCLUSIONS: These studies suggest that nephron polycystin-1 deficiency does not itself contribute to ADPKD hypertension and that it may, in fact, exert a relative salt-wasting effect. The work seems to comprise the first in vivo studies to describe a potential physiologic role for nephron polycystin-1 in the absence of cysts, tubule dilation, or enhanced cell proliferation.


Asunto(s)
Presión Sanguínea/fisiología , Ciclooxigenasa 2/fisiología , Nefronas/fisiología , Riñón Poliquístico Autosómico Dominante/etiología , Canales Catiónicos TRPP/fisiología , Animales , Dinoprostona/orina , Tasa de Filtración Glomerular , Ratones , Ratones Noqueados , Miembro 1 de la Familia de Transportadores de Soluto 12/fisiología
5.
Diabetes ; 68(10): 1934-1949, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292135

RESUMEN

Failure to expand pancreatic ß-cells in response to metabolic stress leads to excessive workload resulting in ß-cell dysfunction, dedifferentiation, death, and development of type 2 diabetes. In this study, we demonstrate that induction of Myc is required for increased pancreatic ß-cell replication and expansion during metabolic stress-induced insulin resistance with short-term high-fat diet (HFD) in young mice. ß-Cell-specific Myc knockout mice fail to expand adaptively and show impaired glucose tolerance and ß-cell dysfunction. Mechanistically, PKCζ, ERK1/2, mTOR, and PP2A are key regulators of the Myc response in this setting. DNA methylation analysis shows hypomethylation of cell cycle genes that are Myc targets in islets from young mice fed with a short-term HFD. Importantly, DNA hypomethylation of Myc response elements does not occur in islets from 1-year-old mice fed with a short-term HFD, impairing both Myc recruitment to cell cycle regulatory genes and ß-cell replication. We conclude that Myc is required for metabolic stress-mediated ß-cell expansion in young mice, but with aging, Myc upregulation is not sufficient to induce ß-cell replication by, at least partially, an epigenetically mediated resistance to Myc action.


Asunto(s)
División Celular/fisiología , Dieta Alta en Grasa , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Edad , Animales , Glucemia/metabolismo , Proliferación Celular , Células Secretoras de Insulina/citología , Ratones , Ratones Noqueados , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
6.
Am J Physiol Renal Physiol ; 316(3): F481-F487, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30623723

RESUMEN

The inner medullary collecting duct (IMCD) produces very high levels of endothelin-1 (ET-1) that acts as an autocrine inhibitor of IMCD Na+ and water reabsorption. Recent studies suggest that IMCD ET-1 production is enhanced by extracellular hypertonicity as can occur during high salt intake. Although NFAT5 has been implicated in the IMCD ET-1 hypertonicity response, no studies in any cell type have identified NFAT5 as a transcriptional regulator of the EDN1 gene; the current study examined this using a mouse IMCD cell line (IMCD3). Media hypertonicity increased IMCD3 ET-1 mRNA in a dose- and time-dependent manner associated with increased NFAT5 nuclear localization. Knockdown of NFAT5 using small-interfering RNA or by CRISPR/Cas9-mediated targeting of exon 4 of the NFAT5 gene reduced the ET-1 hypertonicity response. Chromatin immunoprecipitation using an NFAT5 antibody pulled down ET-1 promoter regions containing NFAT5 consensus binding sequences. Transfected ET-1 promoter reporter constructs revealed maximal hypertonicity-induced reporter activity in the proximal 1-kb region; mutation of the two NFAT5 consensus-binding sites in this region abolished hypertonicity-induced reporter activity. The 1-kb ET-1 promoter-reporter construct lost hypertonicity responsiveness when transfected in CRISPR/Cas9-induced NFAT5-deficient cells. In summary, these findings represent the first description that NFAT5 is a direct transcriptional regulator of the EDN1 gene in IMCD cells and point to a potentially important mechanism by which body Na+ homeostasis is maintained.


Asunto(s)
Endotelina-1/metabolismo , Regulación de la Expresión Génica , Túbulos Renales Colectores/metabolismo , Factores de Transcripción NFATC/metabolismo , Animales , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endotelina-1/genética , Ratones , Factores de Transcripción NFATC/genética , Regiones Promotoras Genéticas , ARN Interferente Pequeño
7.
Am J Physiol Renal Physiol ; 315(3): F607-F617, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790390

RESUMEN

The collecting duct is the predominant nephron site of prorenin and prorenin receptor (PRR) expression. We previously demonstrated that the collecting duct PRR regulates epithelial Na+ channel (ENaC) activity and water transport; however, which cell type is involved remains unclear. Herein, we examined the effects of principal cell (PC) or intercalated cell (IC) PRR deletion on renal Na+ and water handling. PC or IC PRR knockout (KO) mice were obtained by crossing floxed PRR mice with mice harboring Cre recombinase under the control of the AQP2 or B1 subunit of the H+ ATPase promoters, respectively. PC KO mice had reduced renal medullary ENaC-α abundance and increased urinary Na+ losses on a low-Na+ diet compared with controls. Conversely, IC KO mice had no apparent differences in Na+ balance or ENaC abundance compared with controls. Acute treatment with prorenin increased ENaC channel number and open probability in acutely isolated cortical collecting ducts from control and IC PRR KO, but not PC PRR KO, mice. Furthermore, compared with controls, PC KO, but not IC KO mice, had increased urine volume, reduced urine osmolality, and reduced abundance of renal medullary AQP2. Taken together, these findings indicate that PC, but not IC, PRR modulates ENaC activity, urinary Na+ excretion, and water transport.


Asunto(s)
Agua Corporal/metabolismo , Túbulos Renales Colectores/metabolismo , Natriuresis , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/metabolismo , Sodio/orina , Equilibrio Hidroelectrolítico , Animales , Acuaporina 2/genética , Canales Epiteliales de Sodio/metabolismo , Femenino , Genotipo , Túbulos Renales Colectores/citología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Concentración Osmolar , Fenotipo , Regiones Promotoras Genéticas , ATPasas de Translocación de Protón/deficiencia , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Eliminación Renal , Reabsorción Renal , ATPasas de Translocación de Protón Vacuolares/genética
8.
Diabetes ; 65(5): 1283-96, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26868297

RESUMEN

Adaptive ß-cell replication occurs in response to increased metabolic demand during insulin resistance. The intracellular mediators of this compensatory response are poorly defined and their identification could provide significant targets for ß-cell regeneration therapies. Here we show that glucose and insulin in vitro and insulin resistance in vivo activate protein kinase C ζ (PKCζ) in pancreatic islets and ß-cells. PKCζ is required for glucose- and glucokinase activator-induced proliferation of rodent and human ß-cells in vitro. Furthermore, either kinase-dead PKCζ expression (KD-PKCζ) or disruption of PKCζ in mouse ß-cells blocks compensatory ß-cell replication when acute hyperglycemia/hyperinsulinemia is induced. Importantly, KD-PKCζ inhibits insulin resistance-mediated mammalian target of rapamycin (mTOR) activation and cyclin-D2 upregulation independent of Akt activation. In summary, PKCζ activation is key for early compensatory ß-cell replication in insulin resistance by regulating the downstream signals mTOR and cyclin-D2. This suggests that alterations in PKCζ expression or activity might contribute to inadequate ß-cell mass expansion and ß-cell failure leading to type 2 diabetes.


Asunto(s)
Ciclina D2/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Sobrepeso/metabolismo , Proteína Quinasa C/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Activación Enzimática , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/patología , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Sobrepeso/patología , Sobrepeso/fisiopatología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/química , Proteína Quinasa C/genética , Interferencia de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Bancos de Tejidos
9.
Mol Endocrinol ; 28(12): 2038-48, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25361392

RESUMEN

Insulin resistance, when combined with decreased ß-cell mass and relative insufficient insulin secretion, leads to type 2 diabetes. Mice lacking the IRS2 gene (IRS2(-/-) mice) develop diabetes due to uncompensated insulin resistance and ß-cell failure. Hepatocyte growth factor (HGF) activates the phosphatidylinositol 3-kinase/Akt signaling pathway in ß-cells without recruitment of IRS1 or IRS2 and increases ß-cell proliferation, survival, mass, and function when overexpressed in ß-cells of transgenic (TG) mice. We therefore hypothesized that HGF may protect against ß-cell failure in IRS2 deficiency. For that purpose, we cross-bred TG mice overexpressing HGF in ß-cells with IRS2 knockout (KO) mice. Glucose homeostasis analysis revealed significantly reduced hyperglycemia, compensatory hyperinsulinemia, and improved glucose tolerance in TG/KO mice compared with those in KO mice in the context of similar insulin resistance. HGF overexpression also increased glucose-stimulated insulin secretion in IRS2(-/-) islets. To determine whether this glucose homeostasis improvement correlated with alterations in ß-cells, we measured ß-cell mass, proliferation, and death in these mice. ß-Cell proliferation was increased and death was decreased in TG/KO mice compared with those in KO mice. As a result, ß-cell mass was significantly increased in TG/KO mice compared with that in KO mice, reaching levels similar to those in wild-type mice. Analysis of the intracellular targets involved in ß-cell failure in IRS2 deficiency showed Pdx-1 up-regulation, Akt/FoxO1 phosphorylation, and p27 down-regulation in TG/KO mouse islets. Taken together, these results indicate that HGF can compensate for IRS2 deficiency and subsequent insulin resistance by normalizing ß-cell mass and increasing circulating insulin. HGF may be of value as a therapeutic agent against ß-cell failure.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/fisiología , Hiperglucemia/terapia , Proteínas Sustrato del Receptor de Insulina/deficiencia , Células Secretoras de Insulina/metabolismo , Animales , Factor de Crecimiento de Hepatocito/genética , Hiperglucemia/genética , Proteínas Sustrato del Receptor de Insulina/genética , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...