Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiol Case Rep ; 15(10): 1883-1886, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32874378

RESUMEN

A 54-year old female patient with the genetic disease of arterial calcification due to deficiency of CD73 was studied under the Undiagnosed Disease Program of the National Institutes of Health. She presented with symptoms of claudication in her 40s and later developed arthritic symptoms, ectopic calcification in her left hand and severe arterial calcifications of the lower extremities. Since little was known about the composition of the calcifications in arterial calcification due to deficiency of CD73, we investigated their chemical identity and microscopic morphology in this patient with imaging and x-ray diffraction analysis. We found that, microscopically, the bulk calcifications consisted of fragments of either solid or porous internal structure. Both periarticular and arterial calcifications were primarily hydroxyapatite crystals of the same crystalline anisotropy, but different crystalline grain sizes. This was consistent with the presence of hydroxyapatite crystals along with birefringent calcium pyrophosphate dihydrate crystals in the synovial fluid of the patients by polarized light microscopy. The result suggests that tissue calcification in both locations follow a similar biochemical mechanism caused by an increase in extracellular tissue-nonspecific alkaline phosphatase activity.

2.
Nanoscale ; 8(41): 17788-17793, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27714225

RESUMEN

Herein we report a new design for acoustic nanoswimmers, making use of a nanoshell geometry that was synthesized using a sphere template process. Such shell-shaped nanomotors display highly efficient acoustic propulsion on the nanoscale by converting energy from the ambient acoustic field into motion. The propulsion mechanism of the nanoshell motors relies on acoustic streaming stress over the asymmetric surface to produce the driving force for motion. The shell-shaped nanomotors offer a high surface area to volume ratio, allow for efficient scalability and provide higher cargo towing capacity (in comparison to acoustically propelled nanowires). Furthermore, a detailed study of the parameters relevant to propulsion performance, including the material density, size and shape of the motors, reveals that the nanoshell motors exhibit a different propulsion behavior from that predicted by recent theoretical and experimental models for acoustically propelled nanomotors. Such findings indicate that further studies are needed to predict the behavior of acoustic nanomotors with different geometry designs. Practical applications of the new nanoshell motors, including "on-the-move" capture and the transport of multiple cargoes and internalization and movement inside live MCF-7 cancer cells, are demonstrated. These capabilities hold considerable promise for designing fuel-free nanoswimmers capable of performing complex tasks for diverse biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...