Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Life Sci ; 349: 122732, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38768775

Acetaminophen is a known antipyretic and non-opioid analgesic for mild pain and fever. Numerous studies uncover their hidden chemotherapeutics applications, including chronic cancer pain management. Acetaminophen also represents an anti-proliferative effect in some cancer cells. Few studies also suggest that the use of Acetaminophen can trigger apoptosis and impede cellular growth. However, Acetaminophen's molecular potential and precise mechanism against improper cellular proliferation and use as an effective anti-proliferative agent still need to be better understood. Here, our current findings show that Acetaminophen induces proteasomal dysfunctions, resulting in aberrant protein accumulation and mitochondrial abnormalities, and consequently induces cell apoptosis. We observed that the Acetaminophen treatment leads to improper aggregation of ubiquitylated expanded polyglutamine proteins, which may be due to the dysfunctions of proteasome activities. Our in-silico analysis suggests the interaction of Acetaminophen and proteasome. Furthermore, we demonstrated the accumulation of proteasome substrates and the depletion of proteasome activities after treating Acetaminophen in cells. Acetaminophen induces proteasome dysfunctions and mitochondrial abnormalities, leading to pro-apoptotic morphological changes and apoptosis successively. These results suggest that Acetaminophen can induce cell death and may retain a promising anti-proliferative effect. These observations can open new possible molecular strategies in the near future for developing and designing specific and effective proteasome inhibitors, which can be helpful in conjugation with other anti-tumor drugs for their better efficiency.


Acetaminophen , Apoptosis , Mitochondria , Proteasome Endopeptidase Complex , Acetaminophen/pharmacology , Apoptosis/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Cell Proliferation/drug effects , Analgesics, Non-Narcotic/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology
2.
Methods Mol Biol ; 2761: 181-207, 2024.
Article En | MEDLINE | ID: mdl-38427238

Serotonin signaling regulates wide arrays of both neural and extra-neural functions. Serotonin is also found to affect cancer progression directly as well as indirectly by modulating the immune cells. In the brain, serotonin plays a key role in regulating various functions; disturbance of the normal activities of serotonin leads to various mental illnesses, including the neuroinflammatory response in the central nervous system (CNS). The neuroinflammatory response can be initiated in various psychological illnesses and brain cancer. Serotonergic signaling can impact the functions of both glial as well as the immune cells. It can also affect the tumor immune microenvironment and the inflammatory response associated with brain cancers. Apart from this, many drugs used for treatment of psychological illness are known to modulate serotonergic system and can cross the blood-brain barrier. Understanding the role of serotonergic pathways in regulating neuroinflammatory response and brain cancer will provide a new paradigm in modulating the serotonergic components in treating brain cancer and associated inflammation-induced brain damages.


Brain Neoplasms , Serotonin , Humans , Serotonin/metabolism , Brain/metabolism , Central Nervous System/metabolism , Inflammation/pathology , Brain Neoplasms/pathology , Tumor Microenvironment
3.
Clin Immunol ; 259: 109898, 2024 02.
Article En | MEDLINE | ID: mdl-38185267

Myelin antigen-reactive Th1 and Th17 cells are critical drivers of central nervous system (CNS) autoimmune inflammation. Transcription factors T-bet and RORγt play a crucial role in the differentiation and function of Th1 and Th17 cells, and impart them a pathogenic role in CNS autoimmune inflammation. Mice deficient in these two factors do not develop experimental autoimmune encephalomyelitis (EAE). While T-bet and RORγt are known to regulate the expression of several cell adhesion and migratory molecules in T cells, their role in supporting Th1 and Th17 trafficking to the CNS is not completely understood. More importantly, once Th1 and Th17 cells reach the CNS, how the function of these transcription factors modulates the local inflammatory response during EAE is unclear. In the present study, we showed that myelin oligodendrocyte glycoprotein 35-55 peptide (MOG35-55)-specific Th1 cells deficient in RORγt could cross the blood-brain barrier (BBB) but failed to induce demyelination, apoptosis of neurons, and EAE. Pathogenic Th17 cell-derived cytokines GM-CSF, TNF-α, IL-17A, and IL-21 significantly increased the surface expression of IL-23R on neuronal cells. Furthermore, we showed that, in EAE, neurons in the brain and spinal cord express IL-23R. IL-23-IL-23R signaling in neuronal cells caused phosphorylation of STAT3 (Ser727 and Tyr705) and induced cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase-1 (PARP-1) molecules in an IL-23R-dependent manner and caused apoptosis. Thus, we provided a mechanism showing that T-bet is required to recruit pathogenic Th17 cells to the CNS and RORγt-mediated inflammatory response to drive the apoptosis of IL-23R+ neurons in the CNS and cause EAE. Understanding detailed molecular mechanisms will help to design better strategies to control neuroinflammation and autoimmunity. ONE SENTENCE SUMMARY: IL-23-IL-23R signaling promotes apoptosis of CNS neurons.


Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Th17 Cells , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Mice, Transgenic , Th1 Cells , Inflammation , Myelin-Oligodendrocyte Glycoprotein , Transcription Factors/metabolism , Interleukin-23/metabolism , Apoptosis , Neurons/metabolism , Neurons/pathology , Mice, Inbred C57BL
4.
J Leukoc Biol ; 115(2): 235-252, 2024 01 19.
Article En | MEDLINE | ID: mdl-37818891

Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.


Autoimmune Diseases , Neoplasms , Female , Humans , Immunity, Innate , Killer Cells, Natural , Neoplasms/therapy , Tumor Microenvironment
5.
Cureus ; 15(8): e43458, 2023 Aug.
Article En | MEDLINE | ID: mdl-37711929

BACKGROUND: Magnesium sulphate (MgSO4) is conventionally used in the treatment of eclampsia, refractive arrhythmias, asthma, etc. In our study, we aimed to study the analgesic effects of MgSO4 as an adjuvant to fentanyl and reduce the intraoperative opioid requirement to decrease their adverse effects. METHODS: A total of 122 patients scheduled for hysteroscopy were randomly divided into two groups. Patients in the magnesium group (group A) received intravenous MgSO4 50 mg/kg in 100 ml of isotonic saline over 15 minutes before anaesthesia induction and then 15 mg/kg per hour by continuous intravenous infusion. Patients in the control group (group B) received an equal volume of isotonic saline as a placebo. All the patients were induced with fentanyl and propofol. Perioperative haemodynamic monitoring and postoperative assessment of pain were done. RESULTS: Only 18% of the patients in group A required rescue analgesics as compared to 39.3% of patients in group B. The patients receiving MgSO4 displayed lower verbal numeric rating scale scores in the postoperative period. In addition, the intraoperative requirement of fentanyl (101 (21.33) vs. 144 (28.4) µg, mean (SD)) and propofol (121 (13.3) vs. 140 (16.5) mg, mean (SD)) was significantly lower in group A as compared to that in group B. CONCLUSION: MgSO4, when administered as an adjuvant to opioids, provided effective postoperative analgesia thereby reducing the need for rescue analgesics. It also decreases intraoperative fentanyl consumption and its dose-related side effects.

6.
Cytokine Growth Factor Rev ; 69: 14-27, 2023 02.
Article En | MEDLINE | ID: mdl-36028461

CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.


Autoimmune Diseases , T-Lymphocyte Subsets , Humans , Cell Differentiation , Receptors, Antigen, T-Cell , CD4-Positive T-Lymphocytes , Inflammation , T-Lymphocytes, Regulatory
7.
Front Immunol ; 13: 978152, 2022.
Article En | MEDLINE | ID: mdl-36211424

Invasive aspergillosis (IA) is a life-threatening fungal infection for immunocompromised hosts. It is, therefore, necessary to understand the immune pathways that control this infection. Although the primary infection site is the lungs, aspergillosis can disseminate to other organs through unknown mechanisms. Herein we have examined the in vivo role of various complement pathways as well as the complement receptors C3aR and C5aR1 during experimental systemic infection by Aspergillus fumigatus, the main species responsible for IA. We show that C3 knockout (C3-/-) mice are highly susceptible to systemic infection of A. fumigatus. Intriguingly, C4-/- and factor B (FB)-/- mice showed susceptibility similar to the wild-type mice, suggesting that either the complement pathways display functional redundancy during infection (i.e., one pathway compensates for the loss of the other), or complement is activated non-canonically by A. fumigatus protease. Our in vitro study substantiates the presence of C3 and C5 cleaving proteases in A. fumigatus. Examination of the importance of the terminal complement pathway employing C5-/- and C5aR1-/- mice reveals that it plays a vital role in the conidial clearance. This, in part, is due to the increased conidial uptake by phagocytes. Together, our data suggest that the complement deficiency enhances the susceptibility to systemic infection by A. fumigatus.


Aspergillosis , Aspergillus fumigatus , Animals , Complement C5/genetics , Complement C5/metabolism , Complement Factor B/genetics , Lung , Mice , Spores, Fungal
8.
Sci Rep ; 12(1): 15012, 2022 Sep 02.
Article En | MEDLINE | ID: mdl-36056136

Several factors including sex and lifestyle have been reported to contribute to the age-related alteration of immune functions. The study was undertaken to determine age-related differences in the proportion of peripheral blood mononuclear lymphocytes in the Indian population using blood samples from 67 healthy adults (33 females and 34 males) aged between 20 and 80 years old. In the linear regression analysis to estimate the relationship with age categories, there was a significant increase in the frequency of natural killer cells with ageing, while their cytolytic activity significantly declined. The frequency of CD4+ T cells increased with age, whereas that of CD8+ T cells decreased, resulting in the age-associated increase of the CD4/CD8 ratio. The subsets of B cells did not show any significant relationship with age. Although there were variations between the male and female subgroups in effect size of ageing, the trends were in the same direction in all the parameters. Reduced fat intake was associated with a lower frequency of CD4+ T cells, and higher serum cotinine level was associated with a higher CD4/CD8 ratio. The results indicate that cellular immunity in the Indian population is affected by ageing, while humoral immunity is less susceptible to ageing.


CD8-Positive T-Lymphocytes , Leukocytes, Mononuclear , Adult , Aged , Aged, 80 and over , Aging , Female , Flow Cytometry , Humans , Life Style , Male , Middle Aged , Young Adult
9.
J Leukoc Biol ; 112(6): 1497-1507, 2022 12.
Article En | MEDLINE | ID: mdl-36000308

Several subsets of CD8+ T cells are known to have a suppressive function in different tissues and diseases in mice and humans. Due to the lack of a consensus on the phenotype of regulatory CD8+ T cells and very low frequency in the body, its clinical use as adoptive cellular therapy has not advanced much. In the present work, using DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (Aza), we efficiently and stably differentiated naïve CD8+ T cells (CD8+ CD25- CD44- cells) into the CD8+ Foxp3+ regulatory CD8+ T cells (CD8 Tregs). We also generated OVA peptide257-264 -specific CD8+ Foxp3+ Tregs. Compared with activated CD8 T cells, Aza plus TGF-ß-induced CD8+ Foxp3+ Tregs showed significantly increased surface expression of CD39, CD73, CD122, CD62L, and CD103, and secreted TGF-ß and suppressed the proliferation of effector CD4+ T cells. Interestingly, CD8+ Foxp3+ Tregs exhibited low expression of perforin and granzyme required for cytotoxic function. Analysis of chemokine receptors showed that TGF-ß + Aza induced CD8+ Foxp3+ Tregs expressed gut-tropic chemokine receptors CCR6 and CCR9, and chemokine receptors CCR7 and CXCR3 required for mobilization into the spleen, lymph nodes, and gut-associated lymphoid tissues. Adoptive transfer of induced CD8+ Foxp3+ Tregs restored cholera toxin-induced breakdown of oral tolerance to OVA by regulating OVA-specific IgE and IgG1. Altogether, we showed an efficient method to generate antigen-specific CD8+ Foxp3+ Tregs, and the adoptive transfer of these cells induces oral tolerance by suppressing allergic response and maintaining intestinal homeostasis.


Hypersensitivity , T-Lymphocytes, Regulatory , Humans , Mice , Animals , T-Lymphocytes, Regulatory/metabolism , CD8-Positive T-Lymphocytes/metabolism , Forkhead Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Immunoglobulin E , Receptors, Chemokine
10.
J Invest Dermatol ; 142(10): 2706-2714.e3, 2022 10.
Article En | MEDLINE | ID: mdl-35378114

γδ T cells represent a small fraction of total T cells in the body and do not use classical polymorphic major histocompatibility complex‒loaded peptides for mounting an immune response. The importance of the effector and regulatory function of γδ T cells in infections, autoimmunity, and tumor models are well characterized. In this study, we investigated the mechanistic role of γδ T cells in costimulatory blockade‒induced transplantation tolerance. We used donor-specific transfusion and anti-CD40L treatment in C57BL/6 mice to induce tolerance to BALB/c skin allografts. We show that depletion of γδ T cells, specifically Vγ2+ γδ T cells, led to the acute rejection of skin allografts despite tolerogen treatment. Tolerogen treatment promoted CD39+Vγ2+ γδ T cells and suppressed IFN-γ‒producing Vγ2+ γδ T cells in the spleen and allografts. Vγ2+ γδ T cells isolated from tolerized mice suppress T helper type 1 cell differentiation. Adoptive transfer of these regulatory Vγ2+ γδ T cells prolonged the survival of allografts in an untreated recipient and Tcrδ‒/‒ mice. Together, our data show that the Vγ2+ subset promotes costimulatory blockade‒induced survival of skin allografts and that tolerogenic Vγ2+ T cells can be used as an adoptive cellular therapy to promote the survival of allografts.


Inflammation , T-Lymphocytes , Allografts , Animals , Graft Rejection/prevention & control , Graft Survival , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Organic Chemicals , Skin Transplantation
11.
Immunotargets Ther ; 10: 387-407, 2021.
Article En | MEDLINE | ID: mdl-34754837

Natural killer (NK) cells are the most potent arm of the innate immune system and play an important role in immunity, alloimmunity, autoimmunity, and cancer. NK cells recognize "altered-self" cells due to oncogenic transformation or stress due to viral infection and target to kill them. The effector functions of NK cells depend on the interaction of the activating and inhibitory receptors on their surface with their cognate ligand expressed on the target cells. These activating and inhibitory receptors interact with major histocompatibility complex I (MHC I) expressed on the target cells and make decisions to mount an immune response. NK cell immune response includes cytolytic activity and secretion of cytokines to help with the ongoing immune response. The advancement of our knowledge on the expression of inhibitory and activating molecules led us to exploit these molecules in the treatment of cancer. This review discusses the importance of activating and inhibitory receptors on NK cells and their clinical importance in cancer immunotherapy.

12.
Mol Immunol ; 136: 138-149, 2021 08.
Article En | MEDLINE | ID: mdl-34146759

Gamma-delta (γδ) T cells are a heterogeneous population of immune cells, which constitute <5% of total T cells in mice lymphoid tissue and human peripheral blood. However, they comprise a higher proportion of T cells in the epithelial and mucosal barrier, where they perform immune functions, help in tissue repair, and maintaining homeostasis. These tissues resident γδ T cells possess properties of innate and adaptive immune cells which enables them to perform a variety of functions during homeostasis and disease. Emerging data suggest the involvement of γδ T cells during transplant rejection and survival. Interestingly, several functions of γδ T cells can be modulated through their interaction with other immune cells. This review provides an overview of development, differentiation plasticity into regulatory and effector phenotypes of γδ T cells during homeostasis and various diseases.


Graft Rejection/immunology , Immune Tolerance/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Adaptive Immunity/immunology , Animals , Cell Plasticity/immunology , Humans , Immunity, Innate/immunology , Mice , T-Lymphocytes/cytology
13.
Front Immunol ; 12: 660342, 2021.
Article En | MEDLINE | ID: mdl-33936095

Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.


Autoimmunity/drug effects , Inflammation/drug therapy , Neurons/metabolism , Receptors, Cholinergic , Animals , Cholinergic Agents/therapeutic use , Humans , Mice , Neurons/immunology , Receptors, Cholinergic/immunology , Signal Transduction/drug effects
14.
Autoimmun Rev ; 20(7): 102846, 2021 Jul.
Article En | MEDLINE | ID: mdl-33971346

Chemokine receptor CCR6 is expressed on various cells such as B cells, immature dendritic cells, innate lymphoid cells (ILCs), regulatory CD4 T cells, and Th17 cells. CCL20 is the only known high-affinity ligand that binds to CCR6 and drives CCR6+ cells' migration in tissues. CCL20 is mainly produced by epithelial cells, and its expression is increased by several folds under inflammatory conditions. Genome-wide association studies (GWAS) in patients with inflammatory bowel disease (IBD), psoriasis (PS), rheumatoid arthritis (RA), and multiple sclerosis (MS) showed a very strong correlation between the expression of CCR6 and disease severity. It has been shown that disruption of CCR6-CCL20 interaction by using antibodies or antagonists prevents the migration of CCR6 expressing immune cells at the site of inflammation and reduces the severity of the disease. This review discussed the importance of the CCR6-CCL20 axis in IBD, PS, RA, and MS, and recent advances in targeting the CCR6-CCL20 in controlling these autoimmune diseases.


Autoimmune Diseases , Receptors, CCR6 , Autoimmune Diseases/drug therapy , Chemokine CCL20/genetics , Genome-Wide Association Study , Humans , Immunity, Innate , Receptors, CCR6/genetics , Th17 Cells
15.
Theranostics ; 11(11): 5296-5312, 2021.
Article En | MEDLINE | ID: mdl-33859748

Serotonin or 5-hydroxytryptamine (5-HT) is a neurotransmitter known to affect emotion, behavior, and cognition, and its effects are mostly studied in neurological diseases. The crosstalk between the immune cells and the nervous system through serotonin and its receptors (5-HTRs) in the tumor microenvironment and the secondary lymphoid organs are known to affect cancer pathogenesis. However, the molecular mechanism of - alteration in the phenotype and function of - innate and adaptive immune cells by serotonin is not well explored. In this review, we discuss how serotonin and serotonin receptors modulate the phenotype and function of various immune cells, and how the 5-HT-5-HTR axis modulates antitumor immunity. Understanding how 5-HT and immune signaling are involved in tumor immunity could help improve therapeutic strategies to control cancer progression and metastasis.


Neoplasms/immunology , Neoplasms/metabolism , Receptors, Serotonin/metabolism , Serotonin/metabolism , Signal Transduction/physiology , Adaptive Immunity/immunology , Animals , Humans , Immunity, Innate/immunology , Receptors, Serotonin/immunology , Serotonin/immunology , Signal Transduction/immunology
17.
Curr Res Immunol ; 2: 66-78, 2021.
Article En | MEDLINE | ID: mdl-35492389

Neurokinin receptors belong to the GPCRs family and are ubiquitously expressed throughout the nervous and immune systems. Neurokinin receptors in coordination with neurokinins playing an important role in many physiological processes, including smooth muscle contraction, secretion, proliferation, and nociception. They also contribute to various disease conditions such as inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis, psoriasis, and cancer. Neurokinin receptors antagonist are potent and highly selective and showing success in treating chemotherapy-induced nausea and vomiting. In this review, discuss the various neurokinin receptor expression on immune cells and their importance in various inflammatory and autoimmune diseases and their therapeutic importance.

18.
Curr Res Immunol ; 2: 202-217, 2021.
Article En | MEDLINE | ID: mdl-35492402

Neuroimmune communication plays a crucial role in maintaining homeostasis and promptly responding to any foreign insults. Sympathetic nerve fibres are innervated into all the lymphoid organs (bone marrow, thymus, spleen, and lymph nodes) and provide a communication link between the central nervous system (CNS) and ongoing immune response in the tissue microenvironment. Neurotransmitters such as catecholamines (epinephrine and norepinephrine) bind to adrenergic receptors present on most immune and non-immune cells, establish a local neuroimmune-communication system, and help regulate the ongoing immune response. The activation of these receptors varies with the type of receptor-activated, target cell, the activation status of the cells, and timing of activation. Activating adrenergic receptors, specifically ß-adrenergic signalling in immune cells leads to activation of the cAMP-PKA pathway or other non-canonical pathways. It predominantly leads to immune suppression such as inhibition of IL-2 secretion and a decrease in macrophages phagocytosis. This review discusses the expression of different adrenergic receptors in various immune cells, signalling, and how it modulates immune cell function and contributes to health and diseases. Understanding the neuroimmune communication through adrenergic receptor signalling in immune cells could help to design better strategies to control inflammation and autoimmunity.

19.
Front Immunol ; 11: 536326, 2020.
Article En | MEDLINE | ID: mdl-33123124

Chemokine receptor CCR9 is a G protein-coupled receptor and expressed on several types of immune cells, including dendritic cells (DCs), CD4+ T cells, and B cells. CCR9 drives the migration of immune cells to gradients of its cognate ligand CCL25. The chemokine CCL25 is mostly produced by gut and thymic epithelial cells. Gut- and thymic-homing DCs are known to express CCR9, and these cells are predominantly localized in the gut lining and thymus. CCR9+ DCs are implicated in regulating inflammation, food allergy, alloimmunity, and autoimmunity. Differential interaction of CCR9+ DCs with lymphoid and myeloid cells in the thymus, secondary lymphoid tissues, and mucosal sites offer crucial insights to immune regulation. In this review, we examine the phenotypes, distributions, and interactions of CCR9+ DCs with other immune cells, elucidating their functions and role in inflammation and autoimmunity.


Autoimmunity , Chemokines, CC/immunology , Dendritic Cells/immunology , Food Hypersensitivity/immunology , Receptors, CCR/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Dendritic Cells/pathology , Food Hypersensitivity/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Thymus Gland/immunology , Thymus Gland/pathology
20.
Nucleic Acids Res ; 48(11): 5873-5890, 2020 06 19.
Article En | MEDLINE | ID: mdl-32392347

The chromatin organizer SATB1 is highly enriched in thymocytes and is essential for T-cell development. Although SATB1 regulates a large number of genes important for T-cell development, the mechanism(s) regulating expression of SATB1 during this process remain elusive. Using chromatin immune precipitation-seq-based occupancy profiles of H3K4me3 and H3Kme1 at Satb1 gene locus, we predicted four different alternative promoters of Satb1 in mouse thymocytes and characterized them. The expression of Satb1 transcript variants with distinct 5' UTRs occurs in a stage-specific manner during T-cell development and is dependent on TCR signaling. The observed discrepancy between the expression levels of SATB1 mRNA and protein in developing thymocytes can be explained by the differential translatability of Satb1 transcript variants as confirmed by polysome profiling and in vitro translation assay. We show that Satb1 alternative promoters exhibit lineage-specific chromatin accessibility during T-cell development from progenitors. Furthermore, TCF1 regulates the Satb1 P2 promoter switch during CD4SP development, via direct binding to the Satb1 P2 promoter. CD4SP T cells from TCF1 KO mice exhibit downregulation of P2 transcript variant expression as well as low levels of SATB1 protein. Collectively, these results provide unequivocal evidence toward alternative promoter switch-mediated developmental stage-specific regulation of SATB1 in thymocytes.


Chromatin/metabolism , Matrix Attachment Region Binding Proteins/genetics , Promoter Regions, Genetic , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Lineage , Chromatin/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Mice , Mice, Inbred C57BL , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Thymocytes/cytology , Thymocytes/metabolism
...