Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Int J Pharm ; : 124312, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38876441

HYPOTHESIS: Sildenafil base and bosentan monohydrate are co-administered in a chronic therapy of pulmonary arterial hypertension (PAH). Both drugs are poorly soluble in water, and their bioavailability is limited to ca. 50 %. Since bosentan is a weak acid, whereas sildenafil is a weak base, we assumed that their co-amorphization could: (i) improve their solubility in the gastrointestinal fluids, (ii) enable to reach supersaturation and (iii) ensure stabilization of supersaturated solutions. If successful, this could accelerate the development of new fixed-dose combination drugs. EXPERIMENTS: The co-amorphous formulations were prepared using high energy ball milling. Their solid state properties were assessed using XRD, DSC, FT-MIR, and dielectric spectroscopy. Particle size distribution and surface wetting were also analyzed. Polarizing optical microscopy and scanning electron microscopy were applied to assess the microstructure of these powders. A new HPLC-DAD method was developed for a simultaneous quantification of both drugs. FINDINGS: It was shown that binary formulations in which bosentan was molecularly dispered in sildenafil base (Tg = 64-78 °C) could be manufactured in the high energy ball milling process. When the sildenafil load was below 50 wt. %, the formulations showed the greatest thermal stability and formed long-lasting bosentan supersaturation in PBS.

2.
Phys Chem Chem Phys ; 26(13): 10144-10155, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38488033

Chiral liquid crystalline compounds belonging to the homologous series of (S)-4'-(1-methylheptyloxycarbonyl)biphenyl-4-yl 4-[m-(2,2,3,3,4,4,4-heptafluorobutoxy)alk-1-oxy]-2-fluorobenzoates show various behaviors on cooling depending on the length of the CmH2m chain. The homologue with m = 2 crystallizes, while for m = 5, 6, 7, and presumably also for m = 3, the glass of the anticlinic smectic CA* phase is formed. The previous results for m = 4 suggest that this homologue may also be a glassformer. This paper presents the study of the crystallization kinetics for the compound with m = 4 in isothermal conditions (by polarizing optical microscopy) and for the 5-40 K min-1 cooling rates (by differential scanning calorimetry). Microscopic observations enable estimation of the energy barrier for nucleation, which equals 409 kJ mol-1. The threshold cooling rate necessary for complete vitrification of the smectic CA* phase, obtained by extrapolating the enthalpy change during crystallization to zero, is equal to 81 K min-1 or 64 K min-1 for the linear and parabolic fits, respectively. The structural studies by X-ray diffraction show that crystal phases have lamellar structures both in the pristine sample and after crystallization from the melt but with different layer spacing. A weak relaxation process is detected in the sample after melt crystallization, revealing the presence of the conformational disorder. The dynamic glass transition temperature of the SmCA* phase, estimated from the relaxation time of the PH process (as the α-relaxation time could not be registered in a wide enough temperature range), is 244 K.

4.
Sci Rep ; 13(1): 13240, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37580390

Due to its high electron affinity and electron mobility in a wide absorption range of the visible solar spectrum, [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) is often used as an efficient acceptor in organic photovoltaics. In turn, imines are additives to the active layer of organic solar cells, mainly due to the free electron pair of the imine nitrogen atom and the presence of various chemical groups affecting the polarity and conformations of molecules. However, the attainable efficiency is not as high as expected. Therefore, we have systematically investigated two imines and their mixtures with PC71BM by spectroscopic (the high pressure UV-Vis and frequency domain dielectric), thermoelectric, and mechanical methods for organic, flexible photovoltaics. Both the imines, (N,N'E,N,N'E)-N,N'-([2,2':5',2"-terthiophene]-5,5"-diylbis(methanylylidene))bis(benzo[d]thiazol-2-imine) (SC3) and (6E)-N-((5-(5-(5-((E)-(4-(4-(4-fluorophenyl)thiazol-2-yl)phenylimino)methyl)thiophen-2-yl)thiophen-2-yl)thiophen-2-yl)methylene)-4-(4-(4-fluorophenyl)thiazol-2-yl)benzenamine (SC13), have the same core composed of three thiophene rings but different terminal chains of the molecules. In the imine SC3, the imine bond is followed by benzothiazole rings on both sides of the core, while in SC13, a thiazole ring separates two benzene rings, the terminal one F-substituted. The difference in molecular structure affects the electric properties of the neat imine and its mixed layers. An addition of PC71BM to the imines improves their electric conductivity. The mechanical studies focused on the stress at break and elongation showed superior behaviour compared to fullerene derivative. High pressure systematically reduces the band gap energy, Eg, from 1.68 eV at 0.16 GPa to 1.51 eV at 2.69 GPa for PC71BM, from 1.77 eV at 0.1 MPa to 1.53 eV at 4.15 GPa for SC3, and from 1.99 eV at 0.11 GPa to 1.8 eV at 3.10 GPa for SC13, as determined by the UV-Vis absorbance measurements in a diamond-anvil cell. These Eg reductions reflect the compressed intermolecular interactions that can be used to monitor the structural stability of these compounds. Based on the dielectric studies it was found that the relaxation processes registered for both imines are probably the grain boundary relaxation. Two processes also appear in the systems with PC71BM, but none of them is the one characteristic of imines. The high-frequency process has a dipole character while the low-frequency one is probably the grain boundary relaxation of these systems. The mechanism of quasi-DC conduction in various temperature ranges in the studied systems was also determined.

5.
RSC Adv ; 13(6): 3792-3806, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36756553

The aim of the study was to investigate the influence of the environment's pH on the degradation of the layers of the ternary composite l,d-PLA : 5CB : SWCN (10 : 1 : 0.5, w/w/w), where l,d-PLA (poly(lactic acid)) is a biodegradable polymer, 5CB is a well-known liquid crystal (4'-pentyl-4-biphenylcarbonitrile), and SWCN are single-walled carbon nanotubes. For this purpose, the samples were stored in air, distilled water, and solutions of 0.1 M NaOH and 0.1 M HCl, for up to 62 days. Using differential scanning calorimetry, atomic force microscopy, and infra-red spectroscopy methods it was observed that for both neat l,d-PLA and composite layers there was a poor degradation process after the storage under standard air conditions, distilled water, and 0.1 M HCl solution, while the erosion of the surface layer kept in 0.1 M NaOH solution was revealed just after 6 days. The longer storage in 0.1 M NaOH solution resulted in complete degradation of the l,d-PLA polymer layer, while the composite layer survived for up to 62 days. The solubilization of the polymeric l,d-PLA matrix in the composite after 62 days was so severe that it resulted in the vanishing of thermal effects on the DSC curve except for one that was probably connected with the glass transition of the residual quantity of the polymer that remained in the layer or the isotropisation of 5CB. As a result, we have shown that admixtures of 5CB and SWCN accelerate the degradation of l,d-PLA in the composite layer due to the hydrophilic/hydrophobic interface in the layer and act as plasticizers. The mechanism of the degradation process is also discussed.

6.
Molecules ; 27(12)2022 Jun 07.
Article En | MEDLINE | ID: mdl-35744787

Modification of the physical properties of the (S)-MHPOBC antiferroelectric liquid crystal (AFLC) by doping with low concentrations of gold nanoparticles is presented for the first time. We used several complementary experimental methods to determine the effect of Au nanoparticles on AFLC in the metal-organic composites. It was found that the dopant inhibits the matrix crystallization process and modifies the phase transitions temperatures and switching time, as well as increases the helical pitch and spontaneous polarization, while the tilt angle slightly changes. We also showed that both the LC matrix and Au nanoparticles show strong fluorescence in the green light range, and the contact angle depends on the temperature and dopant concentration.

7.
Phys Rev E ; 105(2-1): 024705, 2022 Feb.
Article En | MEDLINE | ID: mdl-35291092

Vitrification of the antiferroelectric smectic-C_{A}^{*} phase is reported for the orthoconic mixture W-1000 and its new derivative W-356. The crystallization is not observed even upon slow cooling and the cold crystallization on subsequent heating is also absent. Molecular dynamics in the smectic phases of both mixtures is investigated down to 173 K and the fragility parameters are determined from the temperature behavior of the α-process. X-ray diffraction is applied to compare the structural parameters of W-356 and W-1000 as well as to study the structural changes during the glass transition of the Sm-C_{A}^{*} phase. The evolution of the smectic layer order within the Sm-C_{A}^{*} glass is reported, while the correlation length of the short-range order in the smectic layers is shown to be almost constant below the glass transition temperature. Electrooptic properties of W-356: spontaneous polarization, tilt angle and switching time are determined and compared with these of W-1000. The observed differences between the properties of W-356 and W-1000 might be explained by the dimer formation of components with the -C≡N terminal group, present only in the W-356 mixture, and by the different structure of the aromatic molecular core in one of the W-356 components.

8.
Materials (Basel) ; 14(16)2021 Aug 21.
Article En | MEDLINE | ID: mdl-34443243

The aim of this paper is to show, by systematic studies, the influence of γ-Fe2O3 nanoparticles on the physical parameters of the liquid crystalline matrix, exhibiting a ferroelectric phase in a wide temperature range. The detailed research was carried out by using diffraction (PXRD), microscopic (OM, SEM, FCPM, POM), thermal (DSC), optical (TLI), electric and spectroscopic (FTIR) methods. We show that even the smallest concentration of γ-Fe2O3 nanoparticles largely modifies the parameters of the ferroelectric SmC* phase, such as spontaneous polarization, switching time, tilt angle, rotational viscosity, dispersion anchoring energy coefficient and helix pitch. The admixture also causes a significant reduction in the temperature of phase transitions, broadening the SmA* phase at the expense of the SmC* phase and strong streaking of the texture. We present and explain the non-monotonic modification of these parameters with an increase in the nanoparticle concentration. The influence of oleic acid admixture on these parameters is also widely discussed. We have shown that certain parameters of organic-metal nanocomposites can be controlled by the appropriate amount of metal admixture.

9.
Materials (Basel) ; 14(7)2021 Mar 31.
Article En | MEDLINE | ID: mdl-33807388

The main goal of this paper was to study the dielectric properties of hybrid binary and ternary composites based on biodegradable polymer Ecoflex®, single walled carbon nanotubes (SWCN), and liquid crystalline 4'-pentyl-4-biphenylcarbonitrile (5CB) compound. The obtained results were compared with other created analogically to Ecoflex®, hybrid layers based on biodegradable polymers such as L,D-polylactide (L,D-PLA) and polycaprolactone (PCL). Frequency domain dielectric spectroscopy (FDDS) results were analyzed taking into consideration the amount of SWCN, frequency, and temperature. For pure Ecoflex®, two relaxation processes (α and ß) were identified. It was shown that the SWCN admixture (in the weight ratio 10:0.01) did not change the properties of the Ecoflex® layer, while in the case of PCL and L,D-PLA, the layers became conductive. The dielectric constant increased with an increase in the content of SWCN in the Ecoflex® matrix and the conductive behavior was not visible, even for the greatest concentration (10:0.06 weight ratio). In the case of the Ecoflex® polymer matrix, the conduction relaxation process at a frequency ca. several kilohertz appeared and became stronger with an increase in the SWCN admixture in the matrix. Addition of oleic acid to the polymer matrix had a smaller effect on the increase in the dielectric response than the addition of liquid crystal 5CB. Fourier transform infrared (FTIR) results revealed that the molecular structure and chemical character of the Ecoflex® and PCL matrixes remained unchanged upon the addition of SWCN or 5CB in a weight ratio of 10:0.01 and 10:1, respectively, while molecular interactions appeared between L,D-PLA and 5CB. Moreover, adding oleic acid to pure Ecoflex® as well as the binary and ternary hybrid layers with SWCN and/or 5CB in a weight ratio of Ecoflex®:oleic acid equal to 10:0.3 did not have an influence on the chemical bonding of these materials.

10.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article En | MEDLINE | ID: mdl-35008471

The aim of our study was to analyze the influence of various concentrations of γ-Fe2O3 nanoparticles on the physical properties of the liquid crystalline ferroelectric SmC* phase, as well as to check the effect of introducing nanoparticles in the LC matrix on their properties in the prepared five nanocomposites. UV-vis spectroscopy showed that the admixture reduced the absorption of nanocomposites in the UV range, additional absorption bands appeared, and all nanocomposites were transparent in the range of 500-850 nm. The molecular dynamics in particular phases of the nanocomposites were investigated by the dielectric spectroscopy method, and it was found that nanoparticles caused a significant increase in the dielectric constant at low frequencies, a strong modification of the dielectric processes in the SmC* phase, and the emergence of new relaxation processes for the highest dopant concentrations. SQUID magnetometry allowed us to determine the magnetic nature of the nanoparticles used, and to show that the blocked state of nanoparticles was preserved in nanocomposites (hysteresis loops were also registered in the ferroelectric SmC* phase). The dependence of the coercive field on the admixture concentration and the widening of the hysteresis loop in nanocomposites in relation to pure nanoparticles were also found. In turn, the FT-MIR spectroscopy method was used to check the influence of the impurity concentration on the formation/disappearance or modification of the absorption bands, and the modification of both the FWHM and the maximum positions for the four selected vibrations in the MIR range, as well as the discontinuous behavior of these parameters at the phase transitions, were found.


Ferric Compounds/chemistry , Nanoparticles/chemistry , Magnetics/methods , Nanocomposites/chemistry , Particle Size , Phase Transition
11.
J Phys Chem B ; 124(28): 6055-6073, 2020 Jul 16.
Article En | MEDLINE | ID: mdl-32569472

In this paper, for the first time, the influence of the BaTiO3 particles on the antiferroelectric liquid crystalline phase was shown. Low concentrations and two different sizes of BaTiO3 particles (nano- and submicroparticles) were used. It was found that admixture of the ferroelectric particles causes a decrease in the concentration of free ions in the liquid crystal matrix. Despite the small amount of admixture, a decrease in spontaneous polarization, switching time and rotational viscosity, was observed, while the tilt angle of molecules and the smectic layer thickness did not change. It turns out that BaTiO3 particles have a very large impact on the dielectric spectra not only in the antiferroelectric phase but also in the ferroelectric and paraelectric phases of the polymorphic mixture studied. The dopants affect also the complex conductivity. In this paper, we explain why some properties are modified by BaTiO3 particles and others are not.

...