Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Biomolecules ; 12(8)2022 07 24.
Article En | MEDLINE | ID: mdl-35892334

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an inherited neurodegenerative disease characterized by early-onset spasticity in the lower limbs, axonal-demyelinating sensorimotor peripheral neuropathy, and cerebellar ataxia. Our understanding of ARSACS (genetic basis, protein function, and disease mechanisms) remains partial. The integrative use of organelle-based quantitative proteomics and whole-genome analysis proposed in the present study allowed identifying the affected disease-specific pathways, upstream regulators, and biological functions related to ARSACS, which exemplify a rationale for the development of improved early diagnostic strategies and alternative treatment options in this rare condition that currently lacks a cure. Our integrated results strengthen the evidence for disease-specific defects related to bioenergetics and protein quality control systems and reinforce the role of dysregulated cytoskeletal organization in the pathogenesis of ARSACS.


Proteomics , Spinocerebellar Ataxias , Heat-Shock Proteins/genetics , Humans , Muscle Spasticity , Mutation , Organelles , Spinocerebellar Ataxias/congenital
2.
Cells ; 11(11)2022 06 04.
Article En | MEDLINE | ID: mdl-35681535

CLN5 disease (MIM: 256731) represents a rare late-infantile form of neuronal ceroid lipofuscinosis (NCL), caused by mutations in the CLN5 gene that encodes the CLN5 protein (CLN5p), whose physiological roles stay unanswered. No cure is currently available for CLN5 patients and the opportunities for therapies are lagging. The role of lysosomes in the neuro-pathophysiology of CLN5 disease represents an important topic since lysosomal proteins are directly involved in the primary mechanisms of neuronal injury occurring in various NCL forms. We developed and implemented a lysosome-focused, label-free quantitative proteomics approach, followed by functional validations in both CLN5-knockout neuronal-like cell lines and Cln5-/- mice, to unravel affected pathways and modifying factors involved in this disease scenario. Our results revealed a key role of CLN5p in lipid homeostasis and sphingolipid metabolism and highlighted mutual NCL biomarkers scored with high lysosomal confidence. A newly generated cln5 knockdown zebrafish model recapitulated most of the pathological features seen in NCL disease. To translate the findings from in-vitro and preclinical models to patients, we evaluated whether two FDA-approved drugs promoting autophagy via TFEB activation or inhibition of the glucosylceramide synthase could modulate in-vitro ROS and lipid overproduction, as well as alter the locomotor phenotype in zebrafish. In summary, our data advance the general understanding of disease mechanisms and modifying factors in CLN5 disease, which are recurring in other NCL forms, also stimulating new pharmacological treatments.


Neuronal Ceroid-Lipofuscinoses , Animals , Homeostasis , Humans , Lipids , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Mice , Neuronal Ceroid-Lipofuscinoses/metabolism , Proteomics , Sphingolipids/metabolism , Zebrafish/metabolism
3.
Cell Death Discov ; 6: 18, 2020.
Article En | MEDLINE | ID: mdl-32257390

CLN5 disease is a rare form of late-infantile neuronal ceroid lipofuscinosis (NCL) caused by mutations in the CLN5 gene that encodes a protein whose primary function and physiological roles remains unresolved. Emerging lines of evidence point to mitochondrial dysfunction in the onset and progression of several forms of NCL, offering new insights into putative biomarkers and shared biological processes. In this work, we employed cellular and murine models of the disease, in an effort to clarify disease pathways associated with CLN5 depletion. A mitochondria-focused quantitative proteomics approach followed by functional validations using cell biology and immunofluorescence assays revealed an impairment of mitochondrial functions in different CLN5 KO cell models and in Cln5 - /- cerebral cortex, which well correlated with disease progression. A visible impairment of autophagy machinery coupled with alterations of key parameters of mitophagy activation process functionally linked CLN5 protein to the process of neuronal injury. The functional link between impaired cellular respiration and activation of mitophagy pathways in the human CLN5 disease condition was corroborated by translating organelle-specific proteome findings to CLN5 patients' fibroblasts. Our study highlights the involvement of CLN5 in activation of mitophagy and mitochondrial homeostasis offering new insights into alternative strategies towards the CLN5 disease treatment.

4.
Eur J Cancer Prev ; 29(3): 238-247, 2020 05.
Article En | MEDLINE | ID: mdl-31567534

Lung cancer is a deadly disease, typically caused by known risk factors, such as tobacco smoke and asbestos exposure. By triggering cellular oxidative stress and altering the antioxidant pathways eliminating reactive oxygen species (ROS), tobacco smoke and asbestos predispose to cancer. Despite easily recognizable high-risk individuals, lung cancer screening and its early detection are hampered by poor diagnostic tools including the absence of proper biomarkers. This study aimed to recognize potential lung cancer biomarkers using induced sputum noninvasively collected from the lungs of individuals in risk of contracting lung cancer. Study groups composed of current and former smokers, who either were significantly asbestos exposed, had lung cancer, or were unexposed and asymptomatic. Screening of potential biomarkers was performed with 52, and five differentially abundant proteins, peroxiredoxin 2 (PRDX2), thioredoxin (TXN), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), extracellular matrix protein 1 (ECM1), and protein S100 A8 (S100A8), were chosen to undergo validation, for their previously known connection with oxidative stress or cancer. Results from the validation in 123 sputa showed that PRDX2, TXN, and GAPDH were differentially abundant in sputa from individuals with lung cancer. TXN had a negative correlation with asbestos exposure, yet a positive correlation with smoking and lung cancer. Thus, tobacco smoking, asbestos exposure, and lung carcinogenesis may disturb the cellular redox state in different ways. A strong correlation was found among PRDX2, TXN, GAPDH, and S100A8, suggesting that these proteins may present a diagnostic biomarker panel to aid recognizing individuals at high risk of contracting lung cancer.


Biomarkers, Tumor/analysis , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/analysis , Lung Neoplasms/diagnosis , Peroxiredoxins/analysis , Thioredoxins/analysis , Aged , Asbestos/adverse effects , Calgranulin A/analysis , Early Detection of Cancer/methods , Ex-Smokers/statistics & numerical data , Extracellular Matrix Proteins/analysis , Female , Finland , Humans , Lung Neoplasms/etiology , Lung Neoplasms/pathology , Male , Middle Aged , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Risk Factors , Smokers/statistics & numerical data , Smoking/adverse effects , Sputum/chemistry
5.
Front Physiol ; 9: 365, 2018.
Article En | MEDLINE | ID: mdl-29695975

The heart of a newborn mouse has an exceptional capacity to regenerate from myocardial injury that is lost within the first week of its life. In order to elucidate the molecular mechanisms taking place in the mouse heart during this critical period we applied an untargeted combinatory multiomics approach using large-scale mass spectrometry-based quantitative proteomics, metabolomics and mRNA sequencing on hearts from 1-day-old and 7-day-old mice. As a result, we quantified 1.937 proteins (366 differentially expressed), 612 metabolites (263 differentially regulated) and revealed 2.586 differentially expressed gene loci (2.175 annotated genes). The analyses pinpointed the fructose-induced glycolysis-pathway to be markedly active in 1-day-old neonatal mice. Integrated analysis of the data convincingly demonstrated cardiac metabolic reprogramming from glycolysis to oxidative phosphorylation in 7-days old mice, with increases of key enzymes and metabolites in fatty acid transport (acylcarnitines) and ß-oxidation. An upsurge in the formation of reactive oxygen species and an increase in oxidative stress markers, e.g., lipid peroxidation, altered sphingolipid and plasmalogen metabolism were also evident in 7-days mice. In vitro maintenance of physiological fetal hypoxic conditions retained the proliferative capacity of cardiomyocytes isolated from newborn mice hearts. In summary, we provide here a holistic, multiomics view toward early postnatal changes associated with loss of a tissue regenerative capacity in the neonatal mouse heart. These results may provide insight into mechanisms of human cardiac diseases associated with tissue regenerative incapacity at the molecular level, and offer a prospect to discovery of novel therapeutic targets.

6.
Front Mol Neurosci ; 10: 266, 2017.
Article En | MEDLINE | ID: mdl-28878621

CLN1 disease (OMIM #256730) is an early childhood ceroid-lipofuscinosis associated with mutated CLN1, whose product Palmitoyl-Protein Thioesterase 1 (PPT1) is a lysosomal enzyme involved in the removal of palmitate residues from S-acylated proteins. In neurons, PPT1 expression is also linked to synaptic compartments. The aim of this study was to unravel molecular signatures connected to CLN1. We utilized SH-SY5Y neuroblastoma cells overexpressing wild type CLN1 (SH-p.wtCLN1) and five selected CLN1 patients' mutations. The cellular distribution of wtPPT1 was consistent with regular processing of endogenous protein, partially detected inside Lysosomal Associated Membrane Protein 2 (LAMP2) positive vesicles, while the mutants displayed more diffuse cytoplasmic pattern. Transcriptomic profiling revealed 802 differentially expressed genes (DEGs) in SH-p.wtCLN1 (as compared to empty-vector transfected cells), whereas the number of DEGs detected in the two mutants (p.L222P and p.M57Nfs*45) was significantly lower. Bioinformatic scrutiny linked DEGs with neurite formation and neuronal transmission. Specifically, neuritogenesis and proliferation of neuronal processes were predicted to be hampered in the wtCLN1 overexpressing cell line, and these findings were corroborated by morphological investigations. Palmitoylation survey identified 113 palmitoylated protein-encoding genes in SH-p.wtCLN1, including 25 ones simultaneously assigned to axonal growth and synaptic compartments. A remarkable decrease in the expression of palmitoylated proteins, functionally related to axonal elongation (GAP43, CRMP1 and NEFM) and of the synaptic marker SNAP25, specifically in SH-p.wtCLN1 cells was confirmed by immunoblotting. Subsequent, bioinformatic network survey of DEGs assigned to the synaptic annotations linked 81 DEGs, including 23 ones encoding for palmitoylated proteins. Results obtained in this experimental setting outlined two affected functional modules (connected to the axonal and synaptic compartments), which can be associated with an altered gene dosage of wtCLN1. Moreover, these modules were interrelated with the pathological effects associated with loss of PPT1 function, similarly as observed in the Ppt1 knockout mice and patients with CLN1 disease.

7.
Proc Natl Acad Sci U S A ; 109(15): 5862-7, 2012 Apr 10.
Article En | MEDLINE | ID: mdl-22451907

Presynaptic nerve terminals are formed from preassembled vesicles that are delivered to the prospective synapse by kinesin-mediated axonal transport. However, precisely how the various cargoes are linked to the motor proteins remains unclear. Here, we report a transport complex linking syntaxin 1a (Stx) and Munc18, two proteins functioning in synaptic vesicle exocytosis at the presynaptic plasma membrane, to the motor protein Kinesin-1 via the kinesin adaptor FEZ1. Mutation of the FEZ1 ortholog UNC-76 in Caenorhabditis elegans causes defects in the axonal transport of Stx. We also show that binding of FEZ1 to Kinesin-1 and Munc18 is regulated by phosphorylation, with a conserved site (serine 58) being essential for binding. When expressed in C. elegans, wild-type but not phosphorylation-deficient FEZ1 (S58A) restored axonal transport of Stx. We conclude that FEZ1 operates as a kinesin adaptor for the transport of Stx, with cargo loading and unloading being regulated by protein kinases.


Adaptor Proteins, Signal Transducing/metabolism , Axonal Transport , Caenorhabditis elegans Proteins/metabolism , Kinesins/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Syntaxin 1/metabolism , Animals , Axons/metabolism , Caenorhabditis elegans/metabolism , HEK293 Cells , Humans , Munc18 Proteins/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Phosphorylation , Protein Binding , Protein Transport
8.
Hypertension ; 59(1): 76-84, 2012 Jan.
Article En | MEDLINE | ID: mdl-22068868

Angiotensin II-induced cardiac damage is associated with oxidative stress-dependent mitochondrial dysfunction. Caloric restriction (CR), a dietary regimen that increases mitochondrial activity and cellular stress resistance, could provide protection. We tested that hypothesis in double transgenic rats harboring human renin and angiotensinogen genes (dTGRs). CR (60% of energy intake for 4 weeks) decreased mortality in dTGRs. CR ameliorated angiotensin II-induced cardiomyocyte hypertrophy, vascular inflammation, cardiac damage and fibrosis, cardiomyocyte apoptosis, and cardiac atrial natriuretic peptide mRNA overexpression. The effects were blood pressure independent and were linked to increased endoplasmic reticulum stress, autophagy, serum adiponectin level, and 5' AMP-activated protein kinase phosphorylation. CR decreased cardiac p38 phosphorylation, nitrotyrosine expression, and serum insulin-like growth factor 1 levels. Mitochondria from dTGR hearts showed clustered mitochondrial patterns, decreased numbers, and volume fractions but increased trans-sectional areas. All of these effects were reduced in CR dTGRs. Mitochondrial proteomic profiling identified 43 dTGR proteins and 42 Sprague-Dawley proteins, of which 29 proteins were in common in response to CR. We identified 7 proteins in CR dTGRs that were not found in control dTGRs. In contrast, 6 mitochondrial proteins were identified from dTGRs that were not detected in any other group. Gene ontology annotations with the Panther protein classification system revealed downregulation of cytoskeletal proteins and enzyme modulators and upregulation of oxidoreductase activity in dTGRs. CR provides powerful, blood pressure-independent, protection against angiotensin II-induced mitochondrial remodeling and cardiac hypertrophy. The findings support the notion of modulating cardiac bioenergetics to ameliorate angiotensin II-induced cardiovascular complications.


Angiotensin II/metabolism , Caloric Restriction/methods , Cardiomegaly/diet therapy , Cardiomegaly/metabolism , Mitochondria/metabolism , Angiotensin II/pharmacology , Angiotensinogen/genetics , Animals , Apoptosis/physiology , Autophagy/drug effects , Autophagy/physiology , Blood Pressure/drug effects , Blood Pressure/physiology , Body Temperature/drug effects , Body Temperature/physiology , Cardiomegaly/genetics , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Energy Metabolism/drug effects , Energy Metabolism/physiology , Heart Rate/drug effects , Heart Rate/physiology , Humans , Mitochondria/drug effects , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Proteome/metabolism , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Renin/genetics , Survival Rate , Vasoconstrictor Agents/metabolism , Vasoconstrictor Agents/pharmacology
9.
Biochem Biophys Res Commun ; 329(3): 1001-9, 2005 Apr 15.
Article En | MEDLINE | ID: mdl-15752755

Myotilin is a sarcomeric protein mutated in two forms of muscle disease, limb-girdle muscular dystrophy type 1A and myofibrillar myopathy. Myotilin is expressed late during human myofibrillogenesis and localizes to Z-discs in mature sarcomere. It interacts with alpha-actinin, actin, and filamin C, and has strong F-actin-bundling activity. These features suggest an important role for myotilin in sarcomere organization. In our effort towards the construction of a genetic model for myotilin-related muscle disorders, we have cloned mouse myotilin, including its promoter region, and studied the expression in various tissues. Mouse myotilin is 90% identical with the human orthologue. Northern blot analysis revealed strong mRNA transcripts in skeletal and cardiac muscle, and weak expression in liver and lung tissue. Western blot and RT-PCR analysis showed the presence of one major product in mouse tissues. Analysis of the 5'-flanking region revealed a number of putative regulatory elements that drive expression in differentiating myoblasts. Finally, endogenous myotilin is induced at later stages of Z-disc assembly in C(2)C(12) cells indicating conservation between mouse and human promoter region.


Aging/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Sequence Analysis, Protein , Amino Acid Sequence , Animals , Connectin , Conserved Sequence , Cytoskeletal Proteins , Humans , Mice , Microfilament Proteins , Molecular Sequence Data , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Organ Specificity , Promoter Regions, Genetic/genetics , Sequence Homology, Amino Acid , Species Specificity , Tissue Distribution
...