Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 118: 334-354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408498

RESUMEN

Aging and age-related diseases are associated with cellular stress, metabolic imbalance, oxidative stress, and neuroinflammation, accompanied by cognitive impairment. Lifestyle factors such as diet, sleep fragmentation, and stress can potentiate damaging cellular cascades and lead to an acceleration of brain aging and cognitive impairment. High-fat diet (HFD) has been associated with obesity, metabolic disorders like diabetes, and cardiovascular disease. HFD also induces neuroinflammation, impairs learning and memory, and may increase anxiety-like behavior. Effects of a HFD may also vary between sexes. The interaction between Age- and Sex- and Diet-related changes in neuroinflammation and cognitive function is an important and poorly understood area of research. This study was designed to examine the effects of HFD on neuroinflammation, behavior, and neurodegeneration in mice in the context of aging or sex differences. In a series of studies, young (2-3 months) or old (12-13 months) C57BL/6J male mice or young male and female C57Bl/6J mice were fed either a standard diet (SD) or a HFD for 5-6 months. Behavior was assessed in Activity Chamber, Y-maze, Novel Place Recognition, Novel Object Recognition, Elevated Plus Maze, Open Field, Morris Water Maze, and Fear Conditioning. Post-mortem analyses assessed a panel of inflammatory markers in the plasma and hippocampus. Additionally, proteomic analysis of the hypothalamus, neurodegeneration, neuroinflammation in the locus coeruleus, and neuroinflammation in the hippocampus were assessed in a subset of young and aged male mice. We show that HFD increased body weight and decreased locomotor activity across groups compared to control mice fed a SD. HFD altered anxiety-related exploratory behavior. HFD impaired spatial learning and recall in young male mice and impaired recall in cued fear conditioning in young and aged male mice, with no effects on spatial learning or fear conditioning in young female mice. Effects of Age and Sex were observed on neuroinflammatory cytokines, with only limited effects of HFD. HFD had a more significant impact on systemic inflammation in plasma across age and sex. Aged male mice had induction of microglial immunoreactivity in both the locus coeruleus (LC) and hippocampus an effect that HFD exacerbated in the hippocampal CA1 region. Proteomic analysis of the hypothalamus revealed changes in pathways related to metabolism and neurodegeneration with both aging and HFD in male mice. Our findings suggest that HFD induces widespread systemic inflammation and limited neuroinflammation. In addition, HFD alters exploratory behavior in male and female mice, and impairs learning and memory in male mice. These results provide valuable insight into the impact of diet on cognition and aging pathophysiology.


Asunto(s)
Dieta Alta en Grasa , Enfermedades Neuroinflamatorias , Femenino , Ratones , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Caracteres Sexuales , Proteómica , Ratones Endogámicos C57BL , Inflamación/metabolismo , Envejecimiento/fisiología , Hipocampo/metabolismo , Cognición
2.
Neurobiol Dis ; 146: 105089, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32971233

RESUMEN

Adrenergic systems regulate both cognitive function and immune function. The primary source of adrenergic signaling in the brain is norepinephrine (NE) neurons of the locus coeruleus (LC), which are vulnerable to age-related degeneration and are one of the earliest sites of pathology and degeneration in neurodegenerative disorders such as Alzheimer's Disease (AD). Loss of adrenergic tone may potentiate neuroinflammation both in aging and neurodegenerative conditions. Importantly, beta-blockers (beta-adrenergic antagonists) are a common treatment for hypertension, co-morbid with aging, and may further exacerbate neuroinflammation associated with loss of adrenergic tone in the central nervous system (CNS). The present studies were designed to both examine proinflammatory consequences of beta-blocker administration in an acute lipopolysaccharide (LPS) model as well as to examine chronic effects of beta-blocker administration on neuroinflammation and behavior in an amyloid-beta protein precursor (APP) mouse model of AD. We provide evidence for robust potentiation of peripheral inflammation with 4 different beta-blockers in an acute model of LPS. However, beta-blockers did not potentiate CNS inflammation in this model. Notably, in this same model, the genetic knockdown of either beta1- or beta2-adrenergic receptors in microglia did potentiate CNS inflammation. Furthermore, in an APP mouse model of amyloid pathology, chronic beta-blocker administration did potentiate CNS inflammation. The beta-blocker, metoprolol, also induced markers of phagocytosis and impaired cognitive behavior in both wild-type and APP mice. Given the induction of markers of phagocytosis in vivo, we examined phagocytosis of synaptosomes in an in vitro primary microglia culture and showed that beta-blockers enhanced whereas beta-adrenergic agonists inhibited phagocytosis of synaptosomes. In conclusion, beta-blockers potentiated inflammation peripherally in a systemic model of inflammation and centrally in an amyloidosis model of neuroinflammation. Additionally, beta-blockers impaired learning and memory and modulated synaptic phagocytosis with implications for synaptic degeneration. These findings warrant further consideration of the proinflammatory consequences of chronic beta-blocker administration, which are not restricted to the periphery in patients with neurodegenerative disorders.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Enfermedad de Alzheimer , Encéfalo/efectos de los fármacos , Inflamación/metabolismo , Receptores Adrenérgicos beta/efectos de los fármacos , Antagonistas Adrenérgicos beta/metabolismo , Envejecimiento/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Cognición/efectos de los fármacos , Cognición/fisiología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Transgénicos , Microglía/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacología , Receptores Adrenérgicos beta/metabolismo
3.
Nat Immunol ; 20(8): 1023-1034, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31263278

RESUMEN

Stroke is a multiphasic process in which initial cerebral ischemia is followed by secondary injury from immune responses to ischemic brain components. Here we demonstrate that peripheral CD11b+CD45+ myeloid cells magnify stroke injury via activation of triggering receptor expressed on myeloid cells 1 (TREM1), an amplifier of proinflammatory innate immune responses. TREM1 was induced within hours after stroke peripherally in CD11b+CD45+ cells trafficking to ischemic brain. TREM1 inhibition genetically or pharmacologically improved outcome via protective antioxidant and anti-inflammatory mechanisms. Positron electron tomography imaging using radiolabeled antibody recognizing TREM1 revealed elevated TREM1 expression in spleen and, unexpectedly, in intestine. In the lamina propria, noradrenergic-dependent increases in gut permeability induced TREM1 on inflammatory Ly6C+MHCII+ macrophages, further increasing epithelial permeability and facilitating bacterial translocation across the gut barrier. Thus, following stroke, peripheral TREM1 induction amplifies proinflammatory responses to both brain-derived and intestinal-derived immunogenic components. Critically, targeting this specific innate immune pathway reduces cerebral injury.


Asunto(s)
Encéfalo/inmunología , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Accidente Cerebrovascular/patología , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Animales , Encéfalo/citología , Línea Celular , Inmunidad Innata/inmunología , Inflamación/patología , Mucosa Intestinal/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células RAW 264.7
4.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486515

RESUMEN

Ischemic stroke is a leading cause of death and disability worldwide. Potential therapeutics aimed at neural repair and functional recovery are limited in their blood-brain barrier permeability and may exert systemic or off-target effects. We examined the effects of brain-derived neurotrophic factor (BDNF), delivered via an extended release HyStem®-C hydrogel implant or vehicle, on sensorimotor function, infarct volume, and neuroinflammation, following permanent distal middle cerebral artery occlusion (dMCAo) in rats. Eight days following dMCAo or sham surgery, treatments were implanted directly into the infarction site. Rats received either vehicle, BDNF-only (0.167 µg/µL), hydrogel-only, hydrogel impregnated with 0.057 µg/µL of BDNF (hydrogel + BDNFLOW), or hydrogel impregnated with 0.167 µg/µL of BDNF (hydrogel + BDNFHIGH). The adhesive removal test (ART) and 28-point Neuroscore (28-PN) were used to evaluate sensorimotor function up to two months post-ischemia. The hydrogel + BDNFHIGH group showed significant improvements on the ART six to eight weeks following treatment and their behavioral performance was consistently greater on the 28-PN. Infarct volume was reduced in rats treated with hydrogel + BDNFHIGH as were levels of microglial, phagocyte, and astrocyte marker immunoexpression in the corpus striatum. These data suggest that targeted intracerebral delivery of BDNF using hydrogels may mitigate ischemic brain injury and restore functional deficits by reducing neuroinflammation.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Hidrogeles/química , Inflamación/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Masculino , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...