Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dis Aquat Organ ; 152: 115-125, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36519683

RESUMEN

Infectious diseases are one of the main threats to biodiversity. The fungus Batrachochytrium dendrobatidis (Bd) is associated with several amphibian losses around the globe, and environmental conditions may dictate the success of pathogen spread. The Brazilian Amazon has been considered climatically unsuitable for chytrid fungus, but additional information on Bd dynamics in this ecoregion is still lacking. We sampled 462 amphibians (449 anurans, 4 caudatans and 9 caecilians), representing 57 species from the Brazilian Amazon, and quantified Bd infections using qPCR. We tested whether abiotic variables predicted the risk of Bd infections, and tested for relationships between biotic variables and Bd. Finally, we experimentally tested the effects of Bd strains CLFT 156 and CLFT 102 (from the southern and northern Atlantic Forest, respectively) on Atelopus manauensis. We detected higher Bd prevalence than those previously reported for the Brazilian Amazon, and positive individuals in all 3 orders of amphibians sampled. Both biotic and abiotic predictors were related to prevalence, and no variable explained infection load. Moreover, we detected higher Bd prevalence in forested than open areas, while the host's reproductive biology was not a factor. We detected higher mortality in the experimental group infected with CLFT 156, probably because this strain was isolated from a region characterized by discrepant climatic conditions (latitudinally more distant) when compared with the host's sampling site in Amazon. The lowland Brazilian Amazon is still underexplored and future studies targeting all amphibian orders are essential to better understand Bd infection dynamics in this region.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Anfibios/microbiología , Anuros/microbiología , Biodiversidad , Micosis/epidemiología , Micosis/veterinaria , Micosis/microbiología
2.
Dis Aquat Organ ; 149: 53-58, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510821

RESUMEN

Amphibians breeding in aquatic environments may encounter a myriad of threats during their life cycle. One species known to prey on native amphibians in aquatic habitats is the invasive North American bullfrog Lithobates catesbeianus, which, besides being a voracious predator and competitor, often acts as a pathogen carrier and disease superspreader because it tolerates high infection loads of the frog-killing fungus Batrachochytrium dendrobatidis (Bd). Here, we hypothesized that the presence of the bullfrogs in microcosms should either (1) decrease Bd disease severity in native frog species by discouraging them from using the aquatic environment, or (2) increase the mortality of the native species. We tested these 2 mutually exclusive hypotheses by co-housing the snouted treefrog Scinax x-signatus (native to our study area) with L. catesbeianus in the laboratory, exposing them to Bd, and using qPCR analysis to quantify the resulting Bd infection loads in the native frogs. Our experiment had the following replicated treatments: (1) native-only treatment (3 individuals of S. x-signatus), (2) native-predominant treatment (2 S. x-signatus + 1 L. catesbeianus), and (3) exotic-predominant treatment (1 S. x-signatus + 2 L. catesbeianus). We found that Bd infection loads in the native S. x-signatus were highest in the native-only treatment, and lowest in the exotic-predominant treatment, indicating that bullfrogs may discourage native frogs from occupying the aquatic habitat, thus reducing encounter rates between native frogs and the waterborne pathogen. This effect could be driven by the bullfrogs' predatory behavior and their high philopatry to aquatic habitats. Our results highlight that predation risk adds to the complexity of host-species interactions in Bd epidemiology.


Asunto(s)
Batrachochytrium/patogenicidad , Micosis/veterinaria , Rana catesbeiana/microbiología , Rana catesbeiana/fisiología , Animales , Anuros/microbiología , Ecosistema , Micosis/microbiología , Micosis/mortalidad , Estados Unidos
3.
Dis Aquat Organ ; 145: 79-88, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34137378

RESUMEN

Chytridiomycosis, an emergent infectious disease caused by the fungus Batrachochytrium dendrobatidis (Bd), is considered one of the drivers of the current amphibian biodiversity loss. To inform endangered species conservation efforts, it is essential to improve our knowledge about the abiotic and biotic factors that influence Bd infection dynamics in the wild. Here, we analyzed variation of Bd infection in the redbelly toad Melanophryniscus montevidensis, a threatened bufonid from Uruguay. We tested the influence of temperature, precipitation, season, and host population size on Bd prevalence and intensity. Additionally, considering the sub-lethal effects of Bd, we tested if these variables, potentially through their effect on Bd, also explain the variation in host body condition. We determined a high Bd prevalence of 41% (100/241), and that population size influenced both Bd prevalence and infection intensity. We identified an effect of precipitation and season on Bd infection intensity and an effect of season on toad body condition. In addition, we found a negative effect of infection intensity on body condition; moreover, while some toads cleared the infection, their body condition did not improve, suggesting a long-term cost. This is the first report on host population size as an important factor in Bd infection dynamics in a threatened anuran species, and seasonal demographic changes appear to play an important role in the dynamics. Finally, we highlight the need for monitoring Bd in this and other endangered amphibian populations, especially those within the genus Melanophryniscus, which includes several Endangered and Data Deficient species in South America.


Asunto(s)
Quitridiomicetos , Animales , Batrachochytrium , Bufonidae , Especies en Peligro de Extinción , Estaciones del Año , América del Sur , Uruguay/epidemiología
4.
Dis Aquat Organ ; 144: 99-106, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33830073

RESUMEN

Environmental variation along elevational gradients shapes conditions for pathogen development, which influences disease outcomes. Chytridiomycosis is a non-vectored disease caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd) and is responsible for massive declines of amphibian populations all over the world. Several biotic and abiotic factors are known to influence Bd infection dynamics in amphibians, including temperature and host species richness. Here, we quantified Bd prevalence and load along an elevational gradient in the Caparaó National Park (CNP), Brazil, and tested for associations of Bd infections with elevation, temperature, and species richness. We hypothesized that Bd infections would increase as local species richness decreased with elevation. We detected Bd along the entire elevational gradient and found a negative association between infection load and elevation. We did not detect significant associations between infection prevalence and elevation. Our findings are consistent with other wide elevational gradient studies, but are contrary to 2 other studies performed in the Atlantic Forest. We did not find the minimum elevational range that should be sampled to detect the influence of elevation on Bd variation. Our study represents the widest elevational gradient that has been sampled in Brazil and contributes to a better understanding of Bd distribution and dynamics in natural systems.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios , Animales , Brasil/epidemiología , Bosques , Micosis/epidemiología , Micosis/veterinaria
5.
Dis Aquat Organ ; 142: 177-187, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33331285

RESUMEN

Amphibians have been facing a pandemic caused by the deadly fungus Batrachochytrium dendrobatidis (Bd). Although studies have elucidated cutaneous and homeostatic disturbances, it is still unknown if the hepatic function can be affected or if hepatic effects differ among host species. Thus, we evaluated the effects of an experimental Bd infection on the liver (histopathology and the hepatosomatic index) of 2 anuran species (Xenopus laevis and Physalaemus albonotatus) with different susceptibilities to Bd infection and compared them to uninfected controls. Bd infection increased the melanomacrophage cell area and induced leukocyte infiltration in both species. The effects were more pronounced in the sensitive species, P. albonotatus, which showed severe reduction in glycogen stores and liver atrophy, due to energetic imbalance. Hepatocytes of P. albonotatus also showed ballooning degeneration (vacuolization), which could lead to cell death and liver failure. Our results provide evidence that although the sensitive species showed more severe effects, the tolerant species also had hepatic responses to the infection. These findings indicate that hepatic function can play an important role in detoxification and in immune responses to chytridiomycosis, and that it may be used as a new biomarker of health status in chytrid infections.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios , Animales , Anuros , Susceptibilidad a Enfermedades/veterinaria , Hígado , Micosis/veterinaria
6.
Sci Rep ; 10(1): 22311, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339839

RESUMEN

In Brazil's Atlantic Forest (AF) biodiversity conservation is of key importance since the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to the rapid loss of amphibian populations here and worldwide. The impact of Bd on amphibians is determined by the host's immune system, of which the skin microbiome is a critical component. The richness and diversity of such cutaneous bacterial communities are known to be shaped by abiotic factors which thus may indirectly modulate host susceptibility to Bd. This study aimed to contribute to understanding the environment-host-pathogen interaction determining skin bacterial communities in 819 treefrogs (Anura: Hylidae and Phyllomedusidae) from 71 species sampled across the AF. We investigated whether abiotic factors influence the bacterial community richness and structure on the amphibian skin. We further tested for an association between skin bacterial community structure and Bd co-occurrence. Our data revealed that temperature, precipitation, and elevation consistently correlate with richness and diversity of the skin microbiome and also predict Bd infection status. Surprisingly, our data suggest a weak but significant positive correlation of Bd infection intensity and bacterial richness. We highlight the prospect of future experimental studies on the impact of changing environmental conditions associated with global change on environment-host-pathogen interactions in the AF.


Asunto(s)
Batrachochytrium/genética , Microbiota/genética , Micosis/microbiología , Piel/microbiología , Animales , Anuros/microbiología , Batrachochytrium/patogenicidad , Biodiversidad , Brasil , Bosques , Interacciones Microbiota-Huesped/genética
7.
Oecologia ; 193(1): 237-248, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32314042

RESUMEN

Ecologists studying emerging wildlife diseases need to confront the realism of imperfect pathogen detection across heterogeneous habitats to aid in conservation decisions. For example, spatial risk assessments of amphibian disease caused by Batrachochytrium dendrobatidis (Bd) has largely ignored imperfect pathogen detection across sampling sites. Because changes in pathogenicity and host susceptibility could trigger recurrent population declines, it is imperative to understand how pathogen prevalence and occupancy vary across environmental gradients. Here, we assessed how Bd occurrence, prevalence, and infection intensity in a diverse Neotropical landscape vary across streams in relation to abiotic and biotic predictors using a hierarchical Bayesian model that accounts for imperfect Bd detection caused by qPCR error. Our model indicated that the number of streams harboring Bd-infected frogs is higher than observed, with Bd likely being present at ~ 43% more streams than it was detected. We found that terrestrial-breeders captured along streams had higher Bd prevalence, but lower infection intensity, than aquatic-breeding species. We found a positive relationship between Bd occupancy probability and stream density, and a negative relationship between Bd occupancy probability and amphibian local richness. Forest cover was a weak predictor of Bd occurrence and infection intensity. Finally, we provide estimates for the minimum number of amphibian captures needed to determine the presence of Bd at a given site where Bd occurs, thus, providing guidence for cost-effective disease risk monitoring programs.


Asunto(s)
Quitridiomicetos , Ríos , Anfibios , Animales , Anuros , Teorema de Bayes , Ecosistema
8.
Proc Biol Sci ; 286(1908): 20191114, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31409249

RESUMEN

Wildlife disease dynamics are strongly influenced by the structure of host communities and their symbiotic microbiota. Conspicuous amphibian declines associated with the waterborne fungal pathogen Batrachochytrium dendrobatidis (Bd) have been observed in aquatic-breeding frogs globally. However, less attention has been given to cryptic terrestrial-breeding amphibians that have also been declining in tropical regions. By experimentally manipulating multiple tropical amphibian assemblages harbouring natural microbial communities, we tested whether Bd spillover from naturally infected aquatic-breeding frogs could lead to Bd amplification and mortality in our focal terrestrial-breeding host: the pumpkin toadlet Brachycephalus pitanga. We also tested whether the strength of spillover could vary depending on skin bacterial transmission within host assemblages. Terrestrial-breeding toadlets acquired lethal spillover infections from neighbouring aquatic hosts and experienced dramatic but generally non-protective shifts in skin bacterial composition primarily attributable to their Bd infections. By contrast, aquatic-breeding amphibians maintained mild Bd infections and higher survival, with shifts in bacterial microbiomes that were unrelated to Bd infections. Our results indicate that Bd spillover from even mildly infected aquatic-breeding hosts may lead to dysbiosis and mortality in terrestrial-breeding species, underscoring the need to further investigate recent population declines of terrestrial-breeding amphibians in the tropics.


Asunto(s)
Anuros/microbiología , Quitridiomicetos/fisiología , Longevidad , Microbiota , Micosis/veterinaria , Animales , Brasil , Micosis/microbiología , Piel/microbiología
9.
PeerJ ; 6: e5891, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425891

RESUMEN

BACKGROUND: Understanding of the physiological effects of chytridiomycosis is crucial to worldwide amphibian conservation. Therefore, we analyzed the cardiac function of two anuran species (Xenopus laevis and Physalaemus albonotatus) with different susceptibilities to infection by the causative agent of chytridiomycosis, Batrachochytrium dendrobatidis (hereafter Bd). METHODS: We analyzed the in situ heart rate (f H - bpm), relative ventricular mass (RVM -%), and Ca2+ handling in heart of Bd infected animals compared to uninfected controls of both study species. RESULTS: Bd infection resulted in a 78% decrease in contraction force values in P. albonotatus when compared to the less susceptible X. laevis. This negative effect was even more evident (82%) for the cardiac pumping capacity. The time to reach peak tension was 125% longer in P. albonotatus than in X. laevis, and cardiac relaxation was 57% longer. DISCUSSION: These results indicate a delay in the cardiac cycle of P. albonotatus on a beat-to-beat basis, which was corroborated by the bradycardia observed in situ. In summary, Bd-sensitive species present impaired cardiac function, which could be a factor in mortality risk. The more pronounced effects of Bd in P. albonotatus may not only result from electrolyte imbalance, as previously reported, but also could be an effect of toxins produced by Bd. For X. laevis, the ability to promote cardiac adjustments seems to be an important homeostatic feature that allows greater tolerance to chytridiomycosis. This study provides new physiological mechanisms underlying the tolerance or susceptibility of amphibian species to chytridiomycosis, which determine their adaptability to survive in the affected environments.

10.
Sci Rep ; 7(1): 16605, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192210

RESUMEN

Host-generalist pathogens sporadically infect naive hosts, potentially triggering epizootics. The waterborne fungus Batrachochytrium dendrobatidis (Bd) is linked to declines of hundreds of amphibian species with aquatic larvae. Although several population declines and extinctions attributed to Bd have been reported among cryptic species undergoing direct development away from water, epidemiological studies focused on these terrestrial frogs are lacking. Our field data support that terrestrial direct-developing hosts are less exposed to Bd during their ontogeny than species with aquatic larvae, and thus they might lack adaptive responses against waterborne chytrids. Using controlled laboratory experiments, we exposed wild-caught amphibian species with terrestrial and aquatic life histories to Bd and found that direct developers showed more rapid increases in infection loads and experienced higher mortality rates than species with aquatic larvae. Our findings provide novel information about host responses to generalist pathogens and specifically show that our focal direct developing species have low resistance to Bd infections. Finally, our results underscore that we should not ignore Bd as a potential threat to direct developing species simply because they are less exposed to Bd in nature; instead future amphibian conservation plans should include efforts to safeguard hundreds of direct-developing amphibian species globally.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Animales , Larva , Mortalidad , Análisis de Supervivencia
11.
Dis Aquat Organ ; 124(2): 109-116, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425424

RESUMEN

The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) is linked to population declines in anurans and salamanders globally. To date, however, few studies have attempted to screen Bd in live caecilians; Bd-positive caecilians have only been reported in Africa and French Guiana. Here, we performed a retrospective survey of museum preserved specimens to (1) describe spatial patterns of Bd infection in Gymnophiona across South America and (2) test whether areas of low climatic suitability for Bd in anurans predict Bd spatial epidemiology in caecilians. We used quantitative PCR to detect Bd in preserved caecilians collected over a 109 yr period, and performed autologistic regressions to test the effect of bioclimatic metrics of temperature and precipitation, vegetation density, and elevation on the likelihood of Bd occurrence. We detected an overall Bd prevalence of 12.4%, with positive samples spanning the Uruguayan savanna, Brazil's Atlantic Forest, and the Amazon basin. Our autologistic models detected a strong effect of macroclimate, a weaker effect of vegetation density, and no effect of elevation on the likelihood of Bd occurrence. Although most of our Bd-positive records overlapped with reported areas of high climatic suitability for the fungus in the Neotropics, many of our new Bd-positive samples extend far into areas of poor suitability for Bd in anurans. Our results highlight an important gap in the study of amphibian chytridiomycosis: the potential negative impact of Bd on Neotropical caecilians and the hypothetical role of caecilians as Bd reservoirs.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos/aislamiento & purificación , Animales , Brasil/epidemiología , Uruguay/epidemiología
12.
PLoS One ; 10(7): e0130554, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26161777

RESUMEN

Enigmatic amphibian declines were first reported in southern and southeastern Brazil in the late 1980s and included several species of stream-dwelling anurans (families Hylodidae and Cycloramphidae). At that time, we were unaware of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd); therefore, pollution, habitat loss, fragmentation and unusual climatic events were hypothesized as primary causes of these declines. We now know that multiple lineages of Bd have infected amphibians of the Brazilian Atlantic forest for over a century, yet declines have not been associated specifically with Bd outbreaks. Because stream-dwelling anurans occupy an environmental hotspot ideal for disease transmission, we investigated temporal variation in population and infection dynamics of three stream-adapted species (Hylodes asper, H. phyllodes, and Cycloramphus boraceiensis) on the northern coast of São Paulo state, Brazil. We surveyed standardized transects along streams for four years, and show that fluctuations in the number of frogs correlate with specific climatic variables that also increase the likelihood of Bd infections. In addition, we found that Bd infection probability in C. boraceiensis, a nocturnal species, was significantly higher than in Hylodes spp., which are diurnal, suggesting that the nocturnal activity may either facilitate Bd zoospore transmission or increase susceptibility of hosts. Our findings indicate that, despite long-term persistence of Bd in Brazil, some hosts persist with seasonally variable infections, and thus future persistence in the face of climate change will depend on the relative effect of those changes on frog recruitment and pathogen proliferation.


Asunto(s)
Anuros/microbiología , Quitridiomicetos/aislamiento & purificación , Micosis/veterinaria , Animales , Brasil , Cambio Climático , Micosis/transmisión , Dinámica Poblacional , Estaciones del Año
13.
Dis Aquat Organ ; 114(1): 61-7, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25958806

RESUMEN

The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos/aislamiento & purificación , Micosis/veterinaria , Bosque Lluvioso , Animales , Brasil/epidemiología , Micosis/epidemiología , Micosis/microbiología
14.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-25297867

RESUMEN

The 'dilution effect' (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity-ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.


Asunto(s)
Anuros , Biodiversidad , Quitridiomicetos/fisiología , Interacciones Huésped-Patógeno , Micosis/veterinaria , Animales , Brasil , Conservación de los Recursos Naturales , Micosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA