Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 2622023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38523699

RESUMEN

The EphA4 receptor tyrosine kinase plays a role in neurodegenerative diseases, inhibition of nerve regeneration, cancer progression and other diseases. Therefore, EphA4 inhibition has potential therapeutic value. Selective EphA4 kinase inhibitors are not available, but we identified peptide antagonists that inhibit ephrin ligand binding to EphA4 with high specificity. One of these peptides is the cyclic APY-d3 (ßAPYCVYRßASWSC-NH2), which inhibits ephrin-A5 ligand binding to EphA4 with low nanomolar binding affinity and is highly protease resistant. Here we describe modifications of APY-d3 that yield two different key derivatives with greatly increased half-lives in the mouse circulation, the lipidated APY-d3-laur8 and the PEGylated APY-d3-PEG4. These two derivatives inhibit ligand induced EphA4 activation in cells with sub-micromolar potency. Since they retain high potency and specificity for EphA4, lipidated and PEGylated APY-d3 derivatives represent new tools for discriminating EphA4 activities in vivo and for preclinical testing of EphA4 inhibition in animal disease models.


Asunto(s)
Efrina-A5 , Receptor EphA4 , Ratones , Animales , Receptor EphA4/metabolismo , Ligandos , Semivida , Efrina-A5/metabolismo , Polietilenglicoles
2.
Leukemia ; 36(1): 210-220, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34326465

RESUMEN

Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell's intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.


Asunto(s)
Enzimas Desubicuitinizantes/antagonistas & inhibidores , Janus Quinasa 2/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Trastornos Mieloproliferativos/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Anciano , Anciano de 80 o más Años , Apoptosis , Proliferación Celular , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Persona de Mediana Edad , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Fosforilación , Pronóstico , Células Tumorales Cultivadas
3.
Br J Cancer ; 122(8): 1175-1184, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32015510

RESUMEN

BACKGROUND: There is growing evidence that spleen tyrosine kinase (SYK) is critical for acute myeloid leukaemia (AML) transformation and maintenance of the leukemic clone in AML patients. It has also been found to be over-expressed in AML patients, with activating mutations in foetal liver tyrosine kinase 3 (FLT3), particularly those with internal tandem duplications (FLT3-ITD), where it transactivates FLT3-ITD and confers resistance to treatment with FLT3 tyrosine kinase inhibitors (TKIs). METHODS: We have previously described a pharmacological approach to treating FLT3-ITD-positive AML that relies on proteasome-mediated FLT3 degradation via inhibition of USP10, the deubiquitinating enzyme (DUB) responsible for cleaving ubiquitin from FLT3. RESULTS: Here, we show that USP10 is also a major DUB required for stabilisation of SYK. We further demonstrate that degradation of SYK can be induced by USP10-targeting inhibitors. USP10 inhibition leads to death of cells driven by active SYK or oncogenic FLT3 and potentiates the anti-leukemic effects of FLT3 inhibition in these cells. CONCLUSIONS: We suggest that USP10 inhibition is a novel approach to inhibiting SYK and impeding its role in the pathology of AML, including oncogenic FLT3-positive AML. Also, given the significant transforming role SYK in other tumours, targeting USP10 may have broader applications in cancer.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Quinasa Syk/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Células Cultivadas , Humanos , Quinasa Syk/antagonistas & inhibidores , Ubiquitina Tiolesterasa/fisiología , Ubiquitinación , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismo
4.
ACS Sens ; 4(2): 294-300, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30608127

RESUMEN

The EphA4 receptor tyrosine kinase is well-known for its pivotal role in development, cancer progression, and neurological disorders. However, how EphA4 kinase activity is regulated in time and space still remains unclear. To visualize EphA4 activity in different membrane microdomains, we developed a sensitive EphA4 biosensor based on Förster resonance energy transfer (FRET), and targeted it in or outside raft-like microdomains in the plasma membrane. We showed that our biosensor can produce a robust and specific FRET response upon EphA4 activation, both in vitro and in live cells. Interestingly, we observed stronger FRET responses for the non-raft targeting biosensor than for the raft targeting biosensor, suggesting that stronger EphA4 activation may occur in non-raft regions. Further investigations revealed the importance of the actin cytoskeleton in suppressing EphA4 activity in raft-like microdomains. Therefore, our FRET-based EphA4 biosensor could serve as a powerful tool to visualize and investigate EphA4 activation and signaling in specific subcellular compartments of single live cells.


Asunto(s)
Técnicas Biosensibles/métodos , Membrana Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Receptor EphA4/metabolismo , Citoesqueleto de Actina/metabolismo , Células HEK293 , Células HeLa , Humanos
5.
Cell Chem Biol ; 24(12): 1490-1500.e11, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29056421

RESUMEN

Deubiquitinating enzymes (DUBs) have garnered significant attention as drug targets in the last 5-10 years. The excitement stems in large part from the powerful ability of DUB inhibitors to promote degradation of oncogenic proteins, especially proteins that are challenging to directly target but which are stabilized by DUB family members. Highly optimized and well-characterized DUB inhibitors have thus become highly sought after tools. Most reported DUB inhibitors, however, are polypharmacological agents possessing weak (micromolar) potency toward their primary target, limiting their utility in target validation and mechanism studies. Due to a lack of high-resolution DUB⋅small-molecule ligand complex structures, no structure-guided optimization efforts have been reported for a mammalian DUB. Here, we report a small-molecule⋅ubiquitin-specific protease (USP) family DUB co-structure and rapid design of potent and selective inhibitors of USP7 guided by the structure. Interestingly, the compounds are non-covalent active-site inhibitors.


Asunto(s)
Inhibidores de Proteasas/farmacología , Tiofenos/farmacología , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Dominio Catalítico , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Especificidad por Sustrato , Tiofenos/química , Ubiquitina/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo
6.
Nat Chem Biol ; 13(12): 1207-1215, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28967922

RESUMEN

Oncogenic forms of the kinase FLT3 are important therapeutic targets in acute myeloid leukemia (AML); however, clinical responses to small-molecule kinase inhibitors are short-lived as a result of the rapid emergence of resistance due to point mutations or compensatory increases in FLT3 expression. We sought to develop a complementary pharmacological approach whereby proteasome-mediated FLT3 degradation could be promoted by inhibitors of the deubiquitinating enzymes (DUBs) responsible for cleaving ubiquitin from FLT3. Because the relevant DUBs for FLT3 are not known, we assembled a focused library of most reported small-molecule DUB inhibitors and carried out a cellular phenotypic screen to identify compounds that could induce the degradation of oncogenic FLT3. Subsequent target deconvolution efforts allowed us to identify USP10 as the critical DUB required to stabilize FLT3. Targeting of USP10 showed efficacy in preclinical models of mutant-FLT3 AML, including cell lines, primary patient specimens and mouse models of oncogenic-FLT3-driven leukemia.


Asunto(s)
Antineoplásicos/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Tiofenos/farmacología , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Estructura Molecular , Mutación , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Inhibidores de Proteínas Quinasas/química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Tiofenos/química , Células Tumorales Cultivadas , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Tirosina Quinasa 3 Similar a fms/genética
7.
ACS Med Chem Lett ; 7(9): 841-6, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27660688

RESUMEN

EphA4 is a receptor tyrosine kinase with a critical role in repulsive axon guidance and synaptic function. However, aberrant EphA4 activity can inhibit neural repair after injury and exacerbate neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer's. We previously identified the cyclic peptide APY-d2 (APYCVYRßASWSC-nh2, containing a disulfide bond) as a potent and selective EphA4 antagonist. However, APY-d2 lacks sufficient plasma stability to be useful for EphA4 inhibition in vivo through peripheral administration. Using structure-activity relationship studies, we show that protecting the peptide N-terminus from proteolytic degradation dramatically increases the persistence of the active peptide in plasma and that a positively charged peptide N-terminus is essential for high EphA4 binding affinity. Among several improved APY-d2 derivatives, the cyclic peptides APY-d3 (ßAPYCVYRßASWSC-nh2) and APY-d4 (ßAPYCVYRßAEWEC-nh2) combine high stability in plasma and cerebrospinal fluid with slightly enhanced potency. These properties make them valuable research tools and leads toward development of therapeutics for neurological diseases.

8.
Mol Biol Cell ; 27(17): 2757-70, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385333

RESUMEN

The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 "canonical" signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 "noncanonical" signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1-induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein-coupled receptors such as the ß2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the ß2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptor EphA2/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , AMP Cíclico/metabolismo , Efrina-A1/metabolismo , Humanos , Fosforilación , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Adrenérgicos/metabolismo , Serina/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas
9.
Anal Chem ; 88(24): 12248-12254, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28193034

RESUMEN

The recent approval of covalent inhibitors for multiple clinical indications has reignited enthusiasm for this class of drugs. As interest in covalent drugs has increased, so too has the need for analytical platforms that can leverage their mechanism-of-action to characterize modified protein targets. Here we describe novel gas phase dissociation pathways which yield predictable fragment ions during MS/MS of inhibitor-modified peptides. We find that these dissociation pathways are common to numerous cysteine-directed probes as well as the covalent drugs, Ibrutinib and Neratinib. We leverage the predictable nature of these fragment ions to improve the confidence of peptide sequence assignment in proteomic analyses and explore their potential use in selective mass spectrometry-based assays.


Asunto(s)
Péptidos/análisis , Inhibidores de Proteínas Quinasas/farmacología , Proteómica/métodos , Pirazoles/farmacología , Pirimidinas/farmacología , Quinolinas/farmacología , Espectrometría de Masas en Tándem/métodos , Adenina/análogos & derivados , Secuencia de Aminoácidos , Línea Celular Tumoral , Descubrimiento de Drogas/métodos , Humanos , Terapia Molecular Dirigida , Péptidos/metabolismo , Piperidinas , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo
10.
PLoS One ; 10(5): e0127081, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25993310

RESUMEN

The Eph receptor tyrosine kinase/ephrin ligand system regulates a wide spectrum of physiological processes, while its dysregulation has been implicated in cancer progression. The human EphA3 receptor is widely upregulated in the tumor microenvironment and is highly expressed in some types of cancer cells. Furthermore, EphA3 is among the most highly mutated genes in lung cancer and it is also frequently mutated in other cancers. We report the structure of the ligand-binding domain of the EphA3 receptor in complex with its preferred ligand, ephrin-A5. The structure of the complex reveals a pronounced tilt of the ephrin-A5 ligand compared to its orientation when bound to the EphA2 and EphB2 receptors and similar to its orientation when bound to EphA4. This tilt brings an additional area of ephrin-A5 into contact with regions of EphA3 outside the ephrin-binding pocket thereby enlarging the size of the interface, which is consistent with the high binding affinity of ephrin-A5 for EphA3. This large variation in the tilt of ephrin-A5 bound to different Eph receptors has not been previously observed for other ephrins.


Asunto(s)
Efrina-A5/química , Efrina-A5/metabolismo , Receptor EphA3/química , Receptor EphA3/metabolismo , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Propiedades de Superficie , Termodinámica
11.
ACS Chem Biol ; 9(12): 2787-95, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25268696

RESUMEN

The EphA4 receptor is highly expressed in the nervous system, and recent findings suggest that its signaling activity hinders neural repair and exacerbates certain neurodegenerative processes. EphA4 has also been implicated in cancer progression. Thus, EphA4 inhibitors represent potential therapeutic leads and useful research tools to elucidate the role of EphA4 in physiology and disease. Here, we report the structure of a cyclic peptide antagonist, APY, in complex with the EphA4 ligand-binding domain (LBD), which represents the first structure of a cyclic peptide bound to a receptor tyrosine kinase. The structure shows that the dodecameric APY efficiently occupies the ephrin ligand-binding pocket of EphA4 and promotes a "closed" conformation of the surrounding loops. Structure-guided relaxation of the strained APY ß-turn and amidation of the C terminus to allow an additional intrapeptide hydrogen bond yielded APY-ßAla8.am, an improved APY derivative that binds to EphA4 with nanomolar affinity. APY-ßAla8.am potently inhibits ephrin-induced EphA4 activation in cells and EphA4-dependent neuronal growth cone collapse, while retaining high selectivity for EphA4. The two crystal structures of APY and APY-ßAla8.am bound to EphA4, in conjunction with secondary phage display screens, highlighted peptide residues that are essential for EphA4 binding as well as residues that can be modified. Thus, the APY scaffold represents an exciting prototype, particularly since cyclic peptides have potentially favorable metabolic stability and are emerging as an important class of molecules for disruption of protein-protein interactions.


Asunto(s)
Efrinas/metabolismo , Péptidos Cíclicos/síntesis química , Receptor EphA4/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Sitios de Unión , Pollos , Cristalografía por Rayos X , Efrinas/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HEK293 , Humanos , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptor EphA4/química , Receptor EphA4/genética , Receptor EphA4/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Relación Estructura-Actividad , Técnicas de Cultivo de Tejidos
12.
ACS Med Chem Lett ; 4(3)2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24167659

RESUMEN

Designing potent and selective peptides and small molecules that target Eph receptor tyrosine kinases remains a challenge and new strategies are needed for developing novel and potent ligands for these receptors. In this study, we performed a structure-activity relationship study of a previously identified 12 amino acid-long peptide, SWL, by alanine scanning to identify residues important for receptor binding. To further enhance and optimize the receptor binding affinity of the SWL peptide, we applied the concept of bivalent ligand design to synthesize several SWL-derived dimeric peptides as novel ligands capable of binding simultaneously to two EphA2 receptor molecules. The dimeric peptides possess higher receptor binding affinity than the original monomeric SWL peptide, consistent with bivalent binding. The most potent dimeric peptide, a SWL dimer with a 6 carbon linker, has about 13 fold increased potency compared to SWL. Furthermore, similar to SWL, the dimeric peptide is an agonist and can promote EphA2 tyrosine phosphorylation (activation) in cultured cells.

13.
Pharmacol Res ; 66(4): 363-73, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22750215

RESUMEN

Tea contains a variety of bioactive chemicals, such as catechins and other polyphenols. These compounds are thought to be responsible for the health benefits of tea consumption by affecting the function of many cellular targets, not all of which have been identified. In a high-throughput screen for small molecule antagonists of the EphA4 receptor tyrosine kinase, we identified five tea polyphenols that substantially inhibit EphA4 binding to a synthetic peptide ligand. Further characterization of theaflavin monogallates from black tea and epigallocatechin-3,5-digallate from green tea revealed that these compounds at low micromolar concentrations also inhibit binding of the natural ephrin ligands to EphA4 and several other Eph receptors in in vitro assays. The compounds behave as competitive EphA4 antagonists, and their inhibitory activity is affected by amino acid mutations within the ephrin binding pocket of EphA4. In contrast, the major green tea catechin, epigallocatechin-3-gallate (EGCG), does not appear to be an effective Eph receptor antagonist. In cell culture assays, theaflavin monogallates and epigallocatechin-3,5-digallate inhibit ephrin-induced tyrosine phosphorylation (activation) of Eph receptors and endothelial capillary-like tube formation. However, the wider spectrum of Eph receptors affected by the tea derivatives in cells suggests additional mechanisms of inhibition besides interfering with ephrin binding. These results show that tea polyphenols derived from both black and green tea can suppress the biological activities of Eph receptors. Thus, the Eph receptor tyrosine kinase family represents an important class of targets for tea-derived phytochemicals.


Asunto(s)
Efrinas/metabolismo , Polifenoles/química , Polifenoles/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Receptores de la Familia Eph/metabolismo , Té/química , Animales , Células COS , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Línea Celular , Chlorocebus aethiops , Ratones , Unión Proteica/efectos de los fármacos , Receptor EphA4/antagonistas & inhibidores , Receptor EphA4/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
14.
Biochem J ; 445(1): 47-56, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22489865

RESUMEN

The EphA4 receptor tyrosine kinase interacts with ephrin ligands to regulate many processes, ranging from axon guidance and nerve regeneration to cancer malignancy. Thus antagonists that inhibit ephrin binding to EphA4 could be useful for a variety of research and therapeutic applications. In the present study we characterize the binding features of three antagonistic peptides (KYL, APY and VTM) that selectively target EphA4 among the Eph receptors. Isothermal titration calorimetry analysis demonstrated that all three peptides bind to the ephrin-binding domain of EphA4 with low micromolar affinity. Furthermore, the effects of a series of EphA4 mutations suggest that the peptides interact in different ways with the ephrin-binding pocket of EphA4. Chemical-shift changes observed by NMR spectroscopy upon binding of the KYL peptide involve many EphA4 residues, consistent with extensive interactions and possibly receptor conformational changes. Additionally, systematic replacement of each of the 12 amino acids of KYL and VTM identify the residues critical for EphA4, binding. The peptides exhibit a long half-life in cell culture medium which, with their substantial binding affinity and selectivity for EphA4, makes them excellent research tools to modulate EphA4 function.


Asunto(s)
Efrinas/metabolismo , Fragmentos de Péptidos/farmacología , Receptor EphA4/antagonistas & inhibidores , Receptor EphA4/metabolismo , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calorimetría , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Humanos , Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Unión Proteica , Conformación Proteica , Puntos Cuánticos , Receptor EphA4/genética , Transducción de Señal
15.
Semin Cell Dev Biol ; 23(1): 51-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22044885

RESUMEN

The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.


Asunto(s)
Péptidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Receptores de la Familia Eph/antagonistas & inhibidores , Receptores de la Familia Eph/metabolismo , Animales , Humanos , Ácido Litocólico/farmacología , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Péptidos/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Salicilatos/farmacología
16.
Plant Cell ; 22(5): 1564-74, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20511299

RESUMEN

S-allantoin, a major ureide compound, is produced in plant peroxisomes from oxidized purines. Sequence evidence suggested that the Transthyretin-like (TTL) protein, which interacts with brassinosteroid receptors, may act as a bifunctional enzyme in the synthesis of S-allantoin. Here, we show that recombinant TTL from Arabidopsis thaliana catalyzes two enzymatic reactions leading to the stereoselective formation of S-allantoin, hydrolysis of hydroxyisourate through a C-terminal Urah domain, and decarboxylation of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline through an N-terminal Urad domain. We found that two different mRNAs are produced from the TTL gene through alternative use of two splice acceptor sites. The corresponding proteins differ in the presence (TTL(1-)) and the absence (TTL(2-)) of a rare internal peroxisomal targeting signal (PTS2). The two proteins have similar catalytic activity in vitro but different in vivo localization: TTL(1-) localizes in peroxisomes, whereas TTL(2-) localizes in the cytosol. Similar splice variants are present in monocots and dicots. TTL originated in green algae through a Urad-Urah fusion, which entrapped an N-terminal PTS2 between the two domains. The presence of this gene in all Viridiplantae indicates that S-allantoin biosynthesis has general significance in plant nitrogen metabolism, while conservation of alternative splicing suggests that this mechanism has general implications in the regulation of the ureide pathway in flowering plants.


Asunto(s)
Alantoína/biosíntesis , Empalme Alternativo/genética , Arabidopsis/genética , Secuencia Conservada/genética , Proteínas de la Membrana/genética , Peroxisomas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Carboxiliasas/metabolismo , Evolución Molecular , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidrolasas/metabolismo , Espacio Intracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Peroxisomas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
ACS Chem Biol ; 5(2): 203-14, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20038185

RESUMEN

While some organisms, including humans, eliminate oxidized purines to get rid of excess nitrogen, for many others the recovery of the purine ring nitrogen is vital. In the so-called ureide pathway, nitrogen is released as ammonia from allantoate through a series of reactions starting with allantoate amidohydrolase (AAH), a manganese-dependent enzyme found in plants and bacteria. We report NMR evidence that the true product of the AAH reaction is S-ureidoglycine, a nonstandard alpha-amino acid that spontaneously releases ammonia in vitro. Using gene proximity and logical genome analysis, we identified a candidate gene (ylbA) for S-ureidoglycine metabolism. The proteins encoded by Escherichia coli and Arabidopsis thaliana genes catalyze the manganese-dependent release of ammonia through hydrolysis of S-ureidoglycine. Hydrolysis then inverts the configuration and yields S-ureidoglycolate. S-Ureidoglycine aminohydrolase (UGHY) is cytosolic in bacteria, whereas in plants it is localized, like allantoate amidohydrolase, in the endoplasmic reticulum. These findings strengthen the basis for the known sensitivity of the ureide pathway to Mn availability and suggest a further rationale for the active transport of Mn in the endoplasmic reticulum of plant cells.


Asunto(s)
Aminohidrolasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Glicina/análogos & derivados , Manganeso/metabolismo , Nitrógeno/metabolismo , Urea/análogos & derivados , Ureohidrolasas/metabolismo , Secuencia de Aminoácidos , Aminohidrolasas/química , Aminohidrolasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glicina/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Urea/metabolismo
18.
Biochem J ; 422(2): 265-72, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19545238

RESUMEN

PH1 (primary hyperoxaluria type 1) is a severe inborn disorder of glyoxylate metabolism caused by a functional deficiency of the peroxisomal enzyme AGXT (alanine-glyoxylate aminotransferase), which converts glyoxylate into glycine using L-alanine as the amino-group donor. Even though pre-genomic studies indicate that other human transaminases can convert glyoxylate into glycine, in PH1 patients these enzymes are apparently unable to compensate for the lack of AGXT, perhaps due to their limited levels of expression, their localization in an inappropriate cell compartment or the scarcity of the required amino-group donor. In the present paper, we describe the cloning of eight human cytosolic aminotransferases, their recombinant expression as His6-tagged proteins and a comparative study on their ability to transaminate glyoxylate, using any standard amino acid as an amino-group donor. To selectively quantify the glycine formed, we have developed and validated an assay based on bacterial GO (glycine oxidase); this assay allows the detection of enzymes that produce glycine by transamination in the presence of mixtures of potential amino-group donors and without separation of the product from the substrates. We show that among the eight enzymes tested, only GPT (alanine transaminase) and PSAT1 (phosphoserine aminotransferase 1) can transaminate glyoxylate with good efficiency, using L-glutamate (and, for GPT, also L-alanine) as the best amino-group donor. These findings confirm that glyoxylate transamination can occur in the cytosol, in direct competition with the conversion of glyoxylate into oxalate. The potential implications for the treatment of primary hyperoxaluria are discussed.


Asunto(s)
Aspartato Aminotransferasas/biosíntesis , Aspartato Aminotransferasas/genética , Citosol/enzimología , Glioxilatos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Animales , Aspartato Aminotransferasas/fisiología , Citosol/química , Glioxilatos/química , Humanos , Conejos , Proteínas Recombinantes/química , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...