Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Immunol ; 14: 1183465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292196

RESUMEN

Introduction: The tumor microenvironment (TME) of glioblastoma (GB) is characterized by an increased infiltration of immunosuppressive cells that attenuate the antitumor immune response. The participation of neutrophils in tumor progression is still controversial and a dual role in the TME has been proposed. In this study, we show that neutrophils are reprogrammed by the tumor to ultimately promote GB progression. Methods: Using in vitro and in vivo assays, we demonstrate the existence of bidirectional GB and neutrophil communication, directly promoting an immunosuppressive TME. Results and discussion: Neutrophils have shown to play an important role in tumor malignancy especially in advanced 3D tumor model and Balb/c nude mice experiments, implying a time- and neutrophil concentration-dependent modulation. Studying the tumor energetic metabolism indicated a mitochondria mismatch shaping the TME secretome. The given data suggests a cytokine milieu in patients with GB that favors the recruitment of neutrophils, sustaining an anti-inflammatory profile which is associated with poor prognosis. Besides, glioma-neutrophil crosstalk has sustained a tumor prolonged activation via NETs formation, indicating the role of NFκB signaling in tumor progression. Moreover, clinical samples have indicated that neutrophil-lymphocyte ratio (NLR), IL-1ß, and IL-10 are associated with poor outcomes in patients with GB. Conclusion: These results are relevant for understanding how tumor progression occurs and how immune cells can help in this process.


Asunto(s)
Glioblastoma , Neutrófilos , Animales , Ratones , Ratones Desnudos , Transducción de Señal , Inmunidad , Microambiente Tumoral
2.
J Periodontol ; 93(10): 1476-1485, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35239976

RESUMEN

BACKGROUND: Saliva, salivary glands, gingival crevicular fluid, and supragingival biofilms may harbor SARS-CoV-2 RNA. This observational study aimed to investigate the presence and load of SARS-CoV-2 RNA in supragingival, and subgingival biofilms obtained from intensive care unit (ICU) patients. METHODS: A convenience sample, composed of 52 COVID-19+ participants (48.6 ± 14.8 years, 26.9% females), were evaluated for pre-existing comorbidities, number of teeth, and periodontal data [visible plaque (VPI), bleeding on probing (BOP), periodontal probing depth (PPD), and attachment loss (AL)]. Supragingival and subgingival samples (SubDeep: four sites with the deepest PPD; SubRemain: remaining shallower sites) were analyzed by RT-qPCR with corresponding cycle quantification (Cq). Statistical analyses considered the individual (P = 5%). RESULTS: Twenty-six participants tested positive for dental biofilms (Biofilm+) with 96.2% of them being positive for subgingival samples. Pre-existing comorbidities, number of teeth examined, VPI, PPD, AL, and BOP were similar between Biofilm+ and Biofilm-. SubDeep PPD (3.72 ± 0.86), AL (4.34 ± 1.33), and % of BOP (66.0 ± 31.1) values were significantly greater compared to SubRemain values (2.84 ± 0.48, 3.37 ± 0.34, and 20.4 ± 24.1, respectively). Biofilm+ Cqs showed no association with the periodontal condition. Cqs from Nasopharynx/Oropharynx (Naso/Oro; n = 36) were similar between Biofilm+ and Biofilm- participants. Length of time since ICU intake, last Naso/Oro RT-qPCR readings, onset of COVID-19 symptoms, and biofilm samplings were greater for Biofilm-. CONCLUSIONS: ICU patients harbored SARS-CoV-2 RNA in supragingival and subgingival biofilms, irrespective of the periodontal condition, and systemic viral load. The high number of positive patients highlights the need to better understand this habit to provide adequate oral care.


Asunto(s)
COVID-19 , Enfermedades Periodontales , Femenino , Humanos , Masculino , ARN Viral , SARS-CoV-2 , Pacientes Internos , Biopelículas , Unidades de Cuidados Intensivos
3.
J Cell Sci ; 132(1)2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30559248

RESUMEN

Tumors are composed of heterogeneous phenotypes, each having different sensitivities to the microenvironment. One microenvironment characteristic - matrix stiffness - helps to regulate malignant transformation and invasion in mammary tumors, but its influence on oral squamous cell carcinoma (OSCC) is unclear. We observed that, on stiff matrices, a highly invasive OSCC cell line (SCC25) comprising a low E-cad to N-cad ratio (InvH/E:NL; SCC25) had increased migration velocity and decreased adhesion strength compared to a less invasive OSCC cell line (Cal27) with high E-cad to N-cad ratio (InvL/E:NH; Cal27). However, InvL/E:NH cells acquire a mesenchymal signature and begin to migrate faster when exposed to prolonged time on a stiff niche, suggesting that cells can be mechanically conditioned. Owing to increased focal adhesion assembly, InvL/E:NH cells migrated faster, which could be reduced when increasing integrin affinity with high divalent cation concentrations. Mirroring these data in human patients, we observed that collagen organization, an indicator of matrix stiffness, was increased with advanced disease and correlated with early recurrence. Consistent with epithelial tumors, our data suggest that OSCC cells are mechanically sensitive and that their contribution to tumor progression is mediated in part by this sensitivity.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Carcinoma de Células Escamosas/patología , Movimiento Celular , Transformación Celular Neoplásica/patología , Colágeno/metabolismo , Transición Epitelial-Mesenquimal , Matriz Extracelular/patología , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/metabolismo , Adhesión Celular , Transformación Celular Neoplásica/metabolismo , Matriz Extracelular/metabolismo , Humanos , Neoplasias de la Boca/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral
4.
Mol Neurobiol ; 55(4): 3185-3195, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28477140

RESUMEN

Brain injuries such as trauma and stroke lead to glial scar formation by reactive astrocytes which produce and secret axonal outgrowth inhibitors. Chondroitin sulfate proteoglycans (CSPG) constitute a well-known class of extracellular matrix molecules produced at the glial scar and cause growth cone collapse. The CSPG glycosaminoglycan side chains composed of chondroitin sulfate (CS) are responsible for its inhibitory activity on neurite outgrowth and are dependent on RhoA activation. Here, we hypothesize that CSPG also impairs neural stem cell migration inhibiting their penetration into an injury site. We show that DCX+ neuroblasts do not penetrate a CSPG-rich injured area probably due to Nogo receptor activation and RhoA/ROCK signaling pathway as we demonstrate in vitro with neural stem cells cultured as neurospheres and pull-down for RhoA. Furthermore, CS-impaired cell migration in vitro induced the formation of large mature adhesions and altered cell protrusion dynamics. ROCK inhibition restored migration in vitro as well as decreased adhesion size.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Sulfatos de Condroitina/farmacología , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Quinasas Asociadas a rho/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Extensiones de la Superficie Celular/efectos de los fármacos , Extensiones de la Superficie Celular/metabolismo , Células Cultivadas , Proteína Doblecortina , Activación Enzimática/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo
5.
Mol Neurobiol ; 55(4): p. 3185-3195, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14878

RESUMEN

Brain injuries such as trauma and stroke lead to glial scar formation by reactive astrocytes which produce and secret axonal outgrowth inhibitors. Chondroitin sulfate proteoglycans (CSPG) constitute a well-known class of extracellular matrix molecules produced at the glial scar and cause growth cone collapse. The CSPG glycosaminoglycan side chains composed of chondroitin sulfate (CS) are responsible for its inhibitory activity on neurite outgrowth and are dependent on RhoA activation. Here, we hypothesize that CSPG also impairs neural stem cell migration inhibiting their penetration into an injury site. We show that DCX+ neuroblasts do not penetrate a CSPG-rich injured area probably due to Nogo receptor activation and RhoA/ROCK signaling pathway as we demonstrate in vitro with neural stem cells cultured as neurospheres and pull-down for RhoA. Furthermore, CS-impaired cell migration in vitro induced the formation of large mature adhesions and altered cell protrusion dynamics. ROCK inhibition restored migration in vitro as well as decreased adhesion size.

6.
Mol Neurobiol, v. 55, n. 4, p. 3185-3195, abr. 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2398

RESUMEN

Brain injuries such as trauma and stroke lead to glial scar formation by reactive astrocytes which produce and secret axonal outgrowth inhibitors. Chondroitin sulfate proteoglycans (CSPG) constitute a well-known class of extracellular matrix molecules produced at the glial scar and cause growth cone collapse. The CSPG glycosaminoglycan side chains composed of chondroitin sulfate (CS) are responsible for its inhibitory activity on neurite outgrowth and are dependent on RhoA activation. Here, we hypothesize that CSPG also impairs neural stem cell migration inhibiting their penetration into an injury site. We show that DCX+ neuroblasts do not penetrate a CSPG-rich injured area probably due to Nogo receptor activation and RhoA/ROCK signaling pathway as we demonstrate in vitro with neural stem cells cultured as neurospheres and pull-down for RhoA. Furthermore, CS-impaired cell migration in vitro induced the formation of large mature adhesions and altered cell protrusion dynamics. ROCK inhibition restored migration in vitro as well as decreased adhesion size.

7.
PLoS One ; 12(4): e0176226, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28437464

RESUMEN

The connective tissue formed by extracellular matrix (ECM) rich in fibronectin and collagen consists a barrier that cancer cells have to overpass to reach blood vessels and then a metastatic site. Cell adhesion to fibronectin is mediated by αvß3 and α5ß1 integrins through an RGD motif present in this ECM protein, thus making these receptors key targets for cell migration studies. Here we investigated the effect of an RGD disintegrin, DisBa-01, on the migration of human fibroblasts (BJ) and oral squamous cancer cells (OSCC, SCC25) on a fibronectin-rich environment. Time-lapse images were acquired on fibronectin-coated glass-bottomed dishes. Migration speed and directionality analysis indicated that OSCC cells, but not fibroblasts, showed significant decrease in both parameters in the presence of DisBa-01 (1µM and 2µM). Integrin expression levels of the α5, αv and ß3 subunits were similar in both cell lines, while ß1 subunit is present in lower levels on the cancer cells. Next, we examined whether the effects of DisBa-01 were related to changes in adhesion properties by using paxillin immunostaining and total internal reflection fluorescence TIRF microscopy. OSCCs in the presence of DisBa-01 showed increased adhesion sizes and number of maturing adhesion. The same parameters were analyzed usingß3-GFP overexpressing cells and showed that ß3 overexpression restored cell migration velocity and the number of maturing adhesion that were altered by DisBa-01. Surface plasmon resonance analysis showed that DisBa-01 has 100x higher affinity for αvß3 integrin than forα5ß1 integrin. In conclusion, our results suggest that the αvß3 integrin is the main receptor involved in cell directionality and its blockage may be an interesting alternative against metastasis.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Integrina alfaVbeta3/metabolismo , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Venenos de Crotálidos/farmacología , Desintegrinas/farmacología , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Neoplasias de la Boca/patología
8.
Mol Cell Biochem ; 421(1-2): 19-28, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27535240

RESUMEN

Deficient wound healing is a common multifactorial complication in diabetic patients, but the cellular and molecular mechanisms involved are poorly defined. In the present study, we analyzed the effects of hyperglycemia on integrins expression in rat dermal fibroblasts and addressed its role in cell adhesion and migration. Diabetes Mellitus was induced in rats by streptozotocin injection and maintained for 30 days. Primary cultures of dermal fibroblasts from control and diabetic rats were maintained under low glucose (5 mM D-glucose) or high glucose (30 mM D-glucose) for 7 days. Cell adhesion and migration were studied by kymography, transwell, and time-lapse assays, and the expressions of integrin subunits αv and α5 were studied by immunocytochemistry and western blotting. Fibroblasts derived from diabetic rats confirmed a reduced migration speed and delayed spreading compared to fibroblasts derived from control rats. The membrane fraction of diabetic-derived fibroblasts showed a decrease of integrin subunits α5 and αv, which was confirmed by immunocytochemistry assays. A reduction in the pericellular fibronectin matrix was also observed. The exposure of diabetic-derived cells to a higher concentration of exogenous fibronectin improved migration velocity and the expression of αv but did not completely restore their migration capacity. In conclusion, the mechanisms involved in the deleterious effects of Diabetes Mellitus on wound healing include the ability of fibroblasts to secrete and to adhere to fibronectin.


Asunto(s)
Movimiento Celular , Dermis/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fibroblastos/metabolismo , Hiperglucemia/metabolismo , Integrina alfaV/metabolismo , Animales , Dermis/patología , Diabetes Mellitus Experimental/patología , Fibroblastos/patología , Hiperglucemia/inducido químicamente , Hiperglucemia/patología , Masculino , Ratas , Ratas Wistar
9.
Dis Model Mech ; 8(12): 1495-515, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26542704

RESUMEN

The actin motor protein non-muscle myosin II (NMII) acts as a master regulator of cell morphology, with a role in several essential cellular processes, including cell migration and post-synaptic dendritic spine plasticity in neurons. NMII also generates forces that alter biochemical signaling, by driving changes in interactions between actin-associated proteins that can ultimately regulate gene transcription. In addition to its roles in normal cellular physiology, NMII has recently emerged as a critical regulator of diverse, genetically complex diseases, including neuronal disorders, cancers and vascular disease. In the context of these disorders, NMII regulatory pathways can be directly mutated or indirectly altered by disease-causing mutations. NMII regulatory pathway genes are also increasingly found in disease-associated copy-number variants, particularly in neuronal disorders such as autism and schizophrenia. Furthermore, manipulation of NMII-mediated contractility regulates stem cell pluripotency and differentiation, thus highlighting the key role of NMII-based pharmaceuticals in the clinical success of stem cell therapies. In this Review, we discuss the emerging role of NMII activity and its regulation by kinases and microRNAs in the pathogenesis and prognosis of a diverse range of diseases, including neuronal disorders, cancer and vascular disease. We also address promising clinical applications and limitations of NMII-based inhibitors in the treatment of these diseases and the development of stem-cell-based therapies.


Asunto(s)
Enfermedad , Miosina Tipo II/metabolismo , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Terapia Molecular Dirigida , Miosina Tipo II/química
10.
J Immunol ; 189(6): 3242-8, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22904312

RESUMEN

Factor H (FH) is one of the most important regulatory proteins of the alternative pathway of the complement system. Patients with FH deficiency have a higher risk for development of infections and kidney diseases because of the uncontrolled activation and subsequent depletion of the central regulatory component C3 of the complement system. In this study, we investigated the consequences of the Arg(127)His mutation in FH (FH(R127H)) previously described in an FH-deficient patient, on the secretion of this protein by skin fibroblasts in vitro. We observed that, although the patient cells stimulated with IFN-γ were able to synthesize FH(R127H), the mutant protein was largely retained within the endoplasmic reticulum (ER), whereas normal human fibroblasts stimulated with IFN-γ secrete FH without retention in the ER. Moreover, the retention of FH(R127H) provoked enlargement of ER cisterns after treatment with IFN-γ. A similar ER retention was observed in Cos-7 cells expressing the mutant FH(R127H) protein. Despite this deficiency in secretion, we show that the FH(R127H) mutant is capable of functioning as a cofactor in the Factor I-mediated cleavage of C3. We then evaluated whether a treatment could increase the secretion of FH, and observed that the patient's fibroblasts treated with the chemical chaperones 4-phenylbutiric acid or curcumin increased the secretion rate of FH. We propose that these chemical chaperones could be used as alternative therapeutic agents to increase FH plasma levels in FH-deficient patients caused by secretion delay of this regulatory protein.


Asunto(s)
Sustitución de Aminoácidos/inmunología , Factor H de Complemento/deficiencia , Factor H de Complemento/metabolismo , Curcumina/farmacología , Fibroblastos/metabolismo , Chaperonas Moleculares/fisiología , Fenilbutiratos/farmacología , Sustitución de Aminoácidos/efectos de los fármacos , Animales , Arginina/genética , Células COS , Células Cultivadas , Niño , Chlorocebus aethiops , Factor H de Complemento/genética , Curcumina/uso terapéutico , Fibroblastos/efectos de los fármacos , Histidina/genética , Humanos , Chaperonas Moleculares/uso terapéutico , Fenilbutiratos/uso terapéutico
11.
J Cell Biochem ; 113(1): 174-83, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21882227

RESUMEN

The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/inducido químicamente , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Prolina/administración & dosificación , 1-Pirrolina-5-Carboxilato Deshidrogenasa/deficiencia , Animales , Antioxidantes/análisis , Glucemia/análisis , Catalasa/metabolismo , Femenino , Fluoresceínas/metabolismo , Glutatión/análisis , Glutatión Peroxidasa/metabolismo , Glucógeno/biosíntesis , Lípidos/biosíntesis , Masculino , Prolina Oxidasa/deficiencia , Prolina Oxidasa/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
12.
PLoS One ; 6(8): e22865, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21826213

RESUMEN

Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG), 25 mM D-glucose (high glucose, HG) or 25 mM L-glucose medium (osmotic control--OC), we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC). We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Glucosa/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Línea Celular , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Ratones , Células 3T3 NIH , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
13.
Biochimie ; 91(8): 961-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19426780

RESUMEN

In the present study we evaluated the effect of chronic methionine administration on oxidative stress and biochemical parameters in liver and serum of rats, respectively. We also performed histological analysis in liver. Results showed that hypermethioninemia increased chemiluminescence, carbonyl content and glutathione peroxidase activity, decreased total antioxidant potential, as well as altered catalase activity. Hypermethioninemia increased synthesis and concentration of glycogen, besides histological studies showed morphological alterations and reduction in the glycogen/glycoprotein content in liver. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and glucose were increased in hypermethioninemic rats. These findings suggest that oxidative damage and histological changes caused by methionine may be related to the hepatic injury observed in hypermethioninemia.


Asunto(s)
Hígado/efectos de los fármacos , Hígado/patología , Metionina/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Glucemia/metabolismo , Glutatión/metabolismo , Glucógeno/biosíntesis , Humanos , Hígado/enzimología , Hígado/metabolismo , Luminiscencia , Metionina/administración & dosificación , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
14.
Int J Dev Neurosci ; 27(4): 337-44, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19460627

RESUMEN

Hyperhomocysteinemia has been related to various diseases, including homocystinuria, neurodegenerative and hepatic diseases. In the present study we initially investigated the effect of chronic homocysteine administration on some parameters of oxidative stress, named total radical-trapping antioxidant potential, total antioxidant reactivity, catalase activity, chemiluminescence, thiobarbituric acid-reactive substances, and total thiol content in liver of rats. We also performed histological analysis, evaluating steatosis, inflammatory infiltration, fibrosis, and glycogen/glycoprotein content in liver tissue sections from hyperhomocysteinemic rats. Finally, we evaluated the activities of aminotransferases in liver and plasma of hyperhomocysteinemic rats. Wistar rats received daily subcutaneous injection of Hcy from their 6th to their 28th day of life. Twelve hours after the last injection the rats were sacrificed, liver and plasma were collected. Hyperhomocysteinemia decreased antioxidant defenses and total thiol content, and increased lipid peroxidation in liver of rats, characterizing a reliable oxidative stress. Histological analysis indicated the presence of inflammatory infiltrate, fibrosis and reduced content of glycogen/glycoprotein in liver tissue sections from hyperhomocysteinemic rats. Aminotransferases activities were not altered by homocysteine. Our data showed a consistent profile of liver injury elicited by homocysteine, which could contribute to explain, at least in part, the mechanisms involved in human liver diseases associated to hyperhomocysteinemia.


Asunto(s)
Fibrosis/patología , Glucógeno/metabolismo , Glicoproteínas/metabolismo , Homocisteína/farmacología , Inflamación/metabolismo , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Femenino , Humanos , Peroxidación de Lípido/efectos de los fármacos , Hígado/citología , Hígado/patología , Masculino , Ratas , Compuestos de Sulfhidrilo/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
15.
J Cell Biol ; 183(3): 543-54, 2008 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-18955554

RESUMEN

We have found that MLC-dependent activation of myosin IIB in migrating cells is required to form an extended rear, which coincides with increased directional migration. Activated myosin IIB localizes prominently at the cell rear and produces large, stable actin filament bundles and adhesions, which locally inhibit protrusion and define the morphology of the tail. Myosin IIA forms de novo filaments away from the myosin IIB-enriched center and back to form regions that support protrusion. The positioning and dynamics of myosin IIA and IIB depend on the self-assembly regions in their coiled-coil C terminus. COS7 and B16 melanoma cells lack myosin IIA and IIB, respectively; and show isoform-specific front-back polarity in migrating cells. These studies demonstrate the role of MLC activation and myosin isoforms in creating a cell rear, the segregation of isoforms during filament assembly and their differential effects on adhesion and protrusion, and a key role for the noncontractile region of the isoforms in determining their localization and function.


Asunto(s)
Actomiosina/fisiología , Movimiento Celular/fisiología , Miosina Tipo IIB no Muscular/fisiología , Animales , Células CHO , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Cricetinae , Cricetulus , Haplorrinos , Humanos , Melanoma , Cadenas Ligeras de Miosina/fisiología , Miosina Tipo IIA no Muscular/fisiología , Miosina Tipo IIB no Muscular/aislamiento & purificación , Fosforilación
16.
Int J Dev Neurosci ; 21(6): 303-7, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12927578

RESUMEN

In the present study, we investigated the effect of Vitamins E and C on the inhibition of Na(+),K(+)-ATPase activity provoked by proline (Pro) administration in rat hippocampus. Five-day-old rats were pretreated for 1 week with daily i.p. administration of saline (control) or Vitamin E (40 mg/kg) and Vitamin C (100 mg/kg). Twelve hours after the last injection, animals received one single injection of Pro (12.8 micromol/g of body weight) or saline and were killed 1h later. Results showed that Na(+),K(+)-ATPase activity was decreased in the Pro-treated rats and that the pretreatment with Vitamins E and C prevented this effect. In another set of experiments, we investigated the in vitro effect of 1.0 mM Pro on Na(+),K(+)-ATPase activity from synaptic membranes of hippocampus of rats. Pro significantly inhibited (30%) Na(+),K(+)-ATPase activity. We also evaluated the effect of preincubating glutathione, trolox and N(pi)-nitro-L-arginine methyl ester (L-NAME) alone or combined with Pro on Na(+),K(+)-ATPase activity. Tested drugs did not alter Na(+),K(+)-ATPase activity, but glutathione prevented the inhibitory effect of Pro on this enzyme activity. These results suggest that the in vivo and in vitro inhibitory effect of Pro on Na(+),K(+)-ATPase activity is probably mediated by free radicals that may be involved in the neurological dysfunction found in hyperprolinemic patients.


Asunto(s)
Ácido Ascórbico/farmacología , Hipocampo/enzimología , Estrés Oxidativo/fisiología , Prolina/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Membranas Sinápticas/enzimología , Vitamina E/farmacología , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Animales , Activación Enzimática/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Valores de Referencia , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/metabolismo
17.
Neurochem Res ; 28(6): 825-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12718434

RESUMEN

Hyperargininemia is a metabolic disorder caused by deficiency of arginase activity resulting in tissue accumulation of arginine and neurological dysfunction. We have previously demonstrated that arginine induces oxidative stress and decreases Na+,K(+)-ATPase in rat midbrain. In the present study we investigated the action of vitamins E and C on the inhibition of Na+,K(+)-ATPase provoked by arginine in the midbrain of 60-day-old rats. Animals were pretreated for 1 week with daily IP administration of saline (control) or vitamins E (40 mg/kg) and C (100 mg/kg). Twelve h after the last injection, animals received one injection of arginine (0.8 micromol/g of body weight) or saline. Chemiluminescence was significantly increased, whereas total antioxidant capacity and Na+,K(+)-ATPase activity were significantly decreased. Furthermore, treatment with vitamins E and C prevented these effects. If these effects also occur in the human condition, it is possible that antioxidant administration might slow the progression of neurodegeneration in this disorder.


Asunto(s)
Arginina/farmacología , Ácido Ascórbico/farmacología , Hiperargininemia , Mesencéfalo/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Vitamina E/farmacología , Animales , Masculino , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...