Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Clin Lab Anal ; 38(7): e25032, 2024 Apr.
Article En | MEDLINE | ID: mdl-38525922

BACKGROUND: Kidney disease is fairly unique due to the lack of symptoms associated with disease activity, and it is therefore dependent on biological monitoring. Dried biofluids, particularly dried capillary blood spots, are an accessible, easy-to-use technology that have seen increased utility in basic science research over the past decade. However, their use is yet to reach the kidney patient population clinically or in large-scale discovery science initiatives. The aim of this study was to systematically evaluate the existing literature surrounding the use of dried biofluids in kidney research. METHODS: A systematic literature review was conducted using three search engines and a predefined search term strategy. Results were summarised according to the collection method, type of biofluid, application to kidney disease, cost, sample stability and patient acceptability. RESULTS: In total, 404 studies were identified and 67 were eligible. In total, 34,739 patients were recruited to these studies with a skew towards male participants (> 73%). The majority of samples were blood, which was used either for monitoring anti-rejection immunosuppressive drug concentrations or for kidney function. Dried biofluids offered significant cost savings to the patient and healthcare service. The majority of patients preferred home microsampling when compared to conventional monitoring. CONCLUSION: There is an unmet need in bringing dried microsampling technology to advance kidney disease despite its advantages. This technology provides an opportunity to upscale patient recruitment and longitudinal sampling, enhance vein preservation and overcome participation bias in research.


Dried Blood Spot Testing , Kidney Diseases , Humans , Dried Blood Spot Testing/methods , Kidney Diseases/blood , Kidney Diseases/diagnosis
2.
Clin Rheumatol ; 42(12): 3189-3200, 2023 Dec.
Article En | MEDLINE | ID: mdl-37755547

Immunoglobulin A (IgA) vasculitis (IgAV, also known as Henoch-Schoenlein purpura, HSP) is the most common vasculitis of childhood. It usually presents with a simple, self-limiting disease course; however, a small subset of patients may develop kidney involvement (IgAV-N) which occurs 4-12 weeks after disease onset and is the biggest contributor to long-term morbidity. Treatment currently targets patients with established kidney involvement; however; there is a desire to work towards early prevention of inflammation during the window of opportunity between disease presentation and onset of significant nephritis. There are no clinical trials evaluating drugs which may prevent or halt the progression of nephritis in children with IgAV apart from the early use of corticosteroids which have no benefit. This article summarises the latest scientific evidence and clinical trials that support potential therapeutic targets for IgAV-N that are currently being developed based on the evolving understanding of the pathophysiology of IgAV-N. These span the mucosal immunity, B-cell and T-cell modulation, RAAS inhibition, and regulation of complement pathways, amongst others. Novel drugs that may be considered for use in early nephritis include TRF-budesonide; B-cell inhibiting agents including belimumab, telitacicept, blisibimod, VIS649, and BION-1301; B-cell depleting agents such as rituximab, ofatumumab, and bortezomib; sparsentan; angiotensin converting enzyme inhibitors (ACE-Is); and complement pathway inhibitors including avacopan, iptacopan, and narsoplimab. Further clinical trials, as well as pre-clinical scientific studies, are needed to identify mechanistic pathways as there may be an opportunity to prevent nephritis in this condition. Key Points • Kidney involvement is the main cause of long-term morbidity and mortality in IgA vasculitis despite the current treatment recommendations. • The evolving understanding of the pathophysiology of IgA vasculitis is allowing exploration of novel treatment options which target underlying immune pathways. • Novel treatments currently being trialled in IgA nephropathy may have benefit in IgA vasculitis due to the similarities in the underlying pathophysiology, such as TRF-budesonide, B-cell modulators, and complement inhibitors. • Further studies, including clinical trials of novel drugs, are urgently needed to improve the long-term outcomes for children with IgA vasculitis nephritis.


IgA Vasculitis , Nephritis , Vasculitis , Humans , Child , IgA Vasculitis/complications , IgA Vasculitis/drug therapy , Immunoglobulin A , Nephritis/etiology , Vasculitis/complications , Vasculitis/drug therapy , Budesonide/therapeutic use
...