Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1414311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835365

RESUMEN

A key challenge in cancer research is the meticulous development of models that faithfully emulates the intricacies of the patient scenario, with emphasis on preserving intra-tumoral heterogeneity and the dynamic milieu of the tumor microenvironment (TME). Organoids emerge as promising tool in new drug development, drug screening and precision medicine. Despite advances in the diagnoses and treatment of pediatric cancers, certain tumor subtypes persist in yielding unfavorable prognoses. Moreover, the prognosis for a significant portion of children experiencing disease relapse is dismal. To improve pediatric outcome many groups are focusing on the development of precision medicine approach. In this review, we summarize the current knowledge about using organoid system as model in preclinical and clinical solid-pediatric cancer. Since organoids retain the pivotal characteristics of primary parent tumors, they exert great potential in discovering novel tumor biomarkers, exploring drug-resistance mechanism and predicting tumor responses to chemotherapy, targeted therapy and immunotherapies. We also examine both the potential opportunities and existing challenges inherent organoids, hoping to point out the direction for future organoid development.

2.
Biology (Basel) ; 13(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38666866

RESUMEN

The microbial communities of the rhizospheres of vineyards have been subject to a considerable body of research, but it is still unclear how the applied soil cultivation methods are able to change the structure, composition, and level of diversity of their communities. Rhizosphere samples were collected from three neighbouring vineyards with the same time of planting and planting material (rootstock: Teleki 5C; Vitis vinifera: Müller Thurgau). Our objective was to examine the diversity occurring in bacterial community structures in vineyards that differ only in the methods of tillage procedure applied, namely intensive (INT), extensive (EXT), and abandoned (AB). For that we took samples from two depths (10-30 cm (shallow = S) and 30-50 cm (deep = D) of the grape rhizosphere in each vineyard and the laboratory and immediately prepared the slices of the roots for DNA-based analysis of the bacterial communities. Bacterial community structure was assessed by means of PCR-DGGE analysis carried out on the v3 region of 16S rRNA gene. Based on the band composition of the DGGE profiles thus obtained, the diversity of the microbial communities was evaluated and determined by the Shannon-Weaver index (H'). Between the AB and EXT vineyards at the S depth, the similarity of the community structure was 55%; however, the similarity of the D samples was more than 80%, while the difference between the INT samples and the other two was also higher than 80%. Based on our results, we can conclude that intensive cultivation strongly affects the structure and diversity of the bacterial community.

3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256164

RESUMEN

Lignocellulose biomasses (LCB), including spent mushroom substrate (SMS), pose environmental challenges if not properly managed. At the same time, these renewable resources hold immense potential for biofuel and chemicals production. With the mushroom market growth expected to amplify SMS quantities, repurposing or disposal strategies are critical. This study explores the use of SMS for cultivating microbial communities to produce carbohydrate-active enzymes (CAZymes). Addressing a research gap in using anaerobic digesters for enriching microbiomes feeding on SMS, this study investigates microbial diversity and secreted CAZymes under varied temperatures (37 °C, 50 °C, and 70 °C) and substrates (SMS as well as pure carboxymethylcellulose, and xylan). Enriched microbiomes demonstrated temperature-dependent preferences for cellulose, hemicellulose, and lignin degradation, supported by thermal and elemental analyses. Enzyme assays confirmed lignocellulolytic enzyme secretion correlating with substrate degradation trends. Notably, thermogravimetric analysis (TGA), coupled with differential scanning calorimetry (TGA-DSC), emerged as a rapid approach for saccharification potential determination of LCB. Microbiomes isolated at mesophilic temperature secreted thermophilic hemicellulases exhibiting robust stability and superior enzymatic activity compared to commercial enzymes, aligning with biorefinery conditions. PCR-DGGE and metagenomic analyses showcased dynamic shifts in microbiome composition and functional potential based on environmental conditions, impacting CAZyme abundance and diversity. The meta-functional analysis emphasised the role of CAZymes in biomass transformation, indicating microbial strategies for lignocellulose degradation. Temperature and substrate specificity influenced the degradative potential, highlighting the complexity of environmental-microbial interactions. This study demonstrates a temperature-driven microbial selection for lignocellulose degradation, unveiling thermophilic xylanases with industrial promise. Insights gained contribute to optimizing enzyme production and formulating efficient biomass conversion strategies. Understanding microbial consortia responses to temperature and substrate variations elucidates bioconversion dynamics, emphasizing tailored strategies for harnessing their biotechnological potential.


Asunto(s)
Agaricales , Microbiota , Consorcios Microbianos , Biocombustibles , Especificidad por Sustrato , Bacterias/genética
4.
Sci Rep ; 14(1): 2585, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297004

RESUMEN

Accurate identification and typing of microbes are crucial steps in gaining an awareness of the biological heterogeneity and reliability of microbial material within any proprietary or public collection. Paenibacillus polymyxa is a bacterial species of great agricultural and industrial importance due to its plant growth-promoting activities and production of several relevant secondary metabolites. In recent years, matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used as an alternative rapid tool for identifying, typing, and differentiating closely related strains. In this study, we investigated the diversity of three P. polymyxa strains. The mass spectra of ATCC 842T, DSM 292, and DSM 365 were obtained, analysed, and compared to select discriminant peaks using ClinProTools software and generate classification models. MALDI-TOF MS analysis showed inconsistent results in identifying DSM 292 and DSM 365 as belonging to P. polimixa species, and comparative analysis of mass spectra revealed the presence of highly discriminatory biomarkers among the three strains. 16S rRNA sequencing and Average Nucleotide Identity (ANI) confirmed the discrepancies found in the proteomic analysis. The case study presented here suggests the enormous potential of the proteomic-based approach, combined with statistical tools, to predict and explore differences between closely related strains in large microbial datasets.


Asunto(s)
Paenibacillus polymyxa , Paenibacillus polymyxa/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Proteómica , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados
5.
Microb Cell Fact ; 22(1): 126, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443119

RESUMEN

BACKGROUND: Biosurfactants are surface-active compounds with environmental and industrial applications. These molecules show higher biocompatibility, stability and efficiency compared to synthetic surfactants. On the other hand, biosurfactants are not cost-competitive to their chemical counterparts. Cost effective technology such as the use of low-cost substrates is a promising approach aimed at reducing the production cost. This study aimed to evaluate the biosurfactant production and activity by the novel strain Rhodococcus sp. SP1d by using different growth substrates. Therefore, to exploit the biosurfactant synthesized by SP1d for environmental applications, the effect of this compound on the bacteria biofilm formation was evaluated. Eventually, for a possible bioremediation application, the biosurfactant properties and its chemical characteristics were investigated using diesel as source of carbon. RESULTS: Rhodococcus sp. SP1d evidence the highest similarity to Rhodococcus globerulus DSM 43954T and the ability to biosynthesize surfactants using a wide range of substrates such as exhausted vegetable oil, mineral oil, butter, n-hexadecane, and diesel. The maximum production of crude biosurfactant after 10 days of incubation was reached on n-hexadecane and diesel with a final yield of 2.38 ± 0.51 and 1.86 ± 0.31 g L- 1 respectively. Biosurfactants produced by SP1d enhanced the biofilm production of P. protegens MP12. Moreover, the results showed the ability of SP1d to produce biosurfactants on diesel even when grown at 10 and 18 °C. The biosurfactant activity was maintained over a wide range of NaCl concentration, pH, and temperature. A concentration of 1000 mg L- 1 of the crude biosurfactant showed an emulsification activity of 55% towards both xylene and olive oil and a reduction of 25.0 mN m- 1 of surface tension of water. Eventually, nuclear magnetic resonance spectroscopy indicated that the biosurfactant is formed by trehalolipids. CONCLUSIONS: The use of low-cost substrates such as exhausted oils and waste butter reduce both the costs of biosurfactant synthesis and the environmental pollution due to the inappropriate disposal of these residues. High production yields, stability and emulsification properties using diesel and n-hexadecane as substrates, make the biosurfactant produced by SP1d a sustainable biocompound for bioremediation purpose. Eventually, the purified biosurfactant improved the biofilm formation of the fungal antagonistic strain P. protegens MP12, and thus seem to be exploitable to increase the adherence and colonization of plant surfaces by this antagonistic strain and possibly enhance antifungal activity.


Asunto(s)
Alcanos , Rhodococcus , Tensoactivos/química , Tensión Superficial , Biodegradación Ambiental
6.
Life (Basel) ; 13(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37109493

RESUMEN

Glioblastoma (GBM) is the most common and aggressive cancer of the brain. Presently, GBM patients have a poor prognosis, and therapy primarily aims to extend the life expectancy of affected patients. The current treatment of GBM in adult cases and high-grade gliomas in the pediatric population involves a multimodal approach that includes surgical resection followed by simultaneous chemo/radiotherapy. Exosomes are nanoparticles that transport proteins and nucleic acids and play a crucial role in mediating intercellular communication. Recent evidence suggests that these microvesicles may be used as biological carriers and offer significant advantages in targeted therapy. Due to their inherent cell-targeting properties, circulation stability, and biocompatibility, exosomes are emerging as promising new carriers for drugs and biotherapeutics. Furthermore, these nanovesicles are a repository of potential diagnostic and prognostic markers. In this review, we focus on the therapeutic potentials of exosomes in nano-delivery and describe the latest evidence of their use as a therapeutic tool in GBM.

7.
World J Microbiol Biotechnol ; 39(5): 121, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36929028

RESUMEN

This study evaluates the capacity of commercial formulations of synthetic fungicides to inhibit grapevine bacterial growth when sprayed on vineyards to control diseases, such as downy mildew, powdery mildew and secondary rots. Fungicide sensitivity plate assays were carried out on bacteria isolated from vineyards that were also identified and characterized for their plant growth-promoting (PGP) traits and antifungal activity. The high taxonomic variability of bacteria screened with different chemical classes of fungicides is one new finding of this study. Seven out of 11 fungicides were able to inhibit the growth of bacteria at a concentration corresponding to the maximum dose allowed by law in spray treatments of vineyards. Bacterial sensitivity to each fungicide varied greatly. Many sensitive isolates displayed PGP traits and/or antagonistic activity. This study shows the potential impact of fungicidal treatments on grapevine bacterial microbiota. The involvement of bacteria beneficial to the growth and health of plants underlines the importance of this investigation. Our data reveal that the control of a certain disease may be possible using fungicides that have no or low impact on natural non-target microbiota. Understanding the action mechanisms of the active ingredients in these products is a priority for the development of new eco-friendly pesticides.


Asunto(s)
Fungicidas Industriales , Oomicetos , Vitis , Fungicidas Industriales/farmacología , Vitis/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Bacterias
8.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36765949

RESUMEN

Small-cell lung cancer (SCLC) is the most aggressive lung cancer type, and is associated with smoking, low survival rate due to high vascularization, metastasis and drug resistance. Alterations in MYC family members are biomarkers of poor prognosis for a large number of SCLC. In particular, MYCN alterations define SCLC cases with immunotherapy failure. MYCN has a highly restricted pattern of expression in normal cells and is an ideal target for cancer therapy but is undruggable by traditional approaches. We propose an innovative approach to MYCN inhibition by an MYCN-specific antigene-PNA oligonucleotide (BGA002)-as a new precision medicine for MYCN-related SCLC. We found that BGA002 profoundly and specifically inhibited MYCN expression in SCLC cells, leading to cell-growth inhibition and apoptosis, while also overcoming multidrug resistance. These effects are driven by mTOR pathway block in concomitance with autophagy reactivation, thus avoiding the side effects of targeting mTOR in healthy cells. Moreover, we identified an MYCN-related SCLC gene signature comprehending CNTFR, DLX5 and TNFAIP3, that was reverted by BGA002. Finally, systemic treatment with BGA002 significantly increased survival in MYCN-amplified SCLC mouse models, including in a multidrug-resistant model in which tumor vascularization was also eliminated. These findings warrant the clinical testing of BGA002 in MYCN-related SCLC.

9.
N Biotechnol ; 72: 71-79, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36191843

RESUMEN

Thauera is one of the main genera involved in polyhydroxyalkanoate (PHA) production in microbial mixed cultures (MMCs) from volatile fatty acids (VFAs). However, no Thauera strains involved in PHA accumulation have been obtained in pure culture so far. This study is the first report of the isolation and characterization of a Thauera sp. strain, namely Sel9, obtained from a sequencing batch reactor (S-SBR) set up for the selection of PHA storing biomass. The 16S rRNA gene evidenced a high sequence similarity with T. butanivorans species. Genome sequencing identified all genes involved in PHA synthesis, regulation and degradation. The strain Sel9 was able to grow with an optimum of chemical oxygen demand-to-nitrogen (COD:N) ratio ranging from 4.7 to 18.9. Acetate, propionate, butyrate and valerate were used as sole carbon and energy sources: a lag phase of 72 h was observed in presence of propionate. Final production of PHAs, achieved with a COD:N ratio of 75.5, was 60.12 ± 2.60 %, 49.31 ± 0.7 %, 37.31 ± 0.43 % and 18.06 ± 3.81 % (w/w) by using butyrate, acetate, valerate and propionate as substrates, respectively. Also, the 3-hydroxybutyrate/3-hydroxyvalerate ratio reflected the type of carbon sources used: 12.30 ± 0.82 for butyrate, 3.56 ± 0.02 for acetate, 0.93 ± 0.03 for valerate and 0.76 ± 0.02 for propionate. The results allow a better elucidation of the role of Thauera in MMCs and strongly suggest a possible exploitation of Thauera sp. Sel9 for a cost-effective and environmentally friendly synthesis of PHAs using VFAs as substrate.


Asunto(s)
Polihidroxialcanoatos , Propionatos/metabolismo , Thauera/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ácidos Grasos Volátiles/metabolismo , Bacterias/metabolismo , Acetatos/metabolismo , Butiratos/metabolismo , Carbono/metabolismo , Reactores Biológicos/microbiología
10.
Cancers (Basel) ; 14(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36139583

RESUMEN

Among childhood cancers, neuroblastoma is the most diffuse solid tumor and the deadliest in children. While to date, the pathology has become progressively manageable with a significant increase in 5-year survival for its less aggressive form, high-risk neuroblastoma (HR-NB) remains a major issue with poor outcome and little survivability of patients. The staging system has also been improved to better fit patient needs and to administer therapies in a more focused manner in consideration of pathology features. New and improved therapies have been developed; nevertheless, low efficacy and high toxicity remain a staple feature of current high-risk neuroblastoma treatment. For this reason, more specific procedures are required, and new therapeutic targets are also needed for a precise medicine approach. In this scenario, MYCN is certainly one of the most interesting targets. Indeed, MYCN is one of the most relevant hallmarks of HR-NB, and many studies has been carried out in recent years to discover potent and specific inhibitors to block its activities and any related oncogenic function. N-Myc protein has been considered an undruggable target for a long time. Thus, many new indirect and direct approaches have been discovered and preclinically evaluated for the interaction with MYCN and its pathways; a few of the most promising approaches are nearing clinical application for the investigation in HR-NB.

11.
J Exp Clin Cancer Res ; 41(1): 160, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490242

RESUMEN

BACKGROUND: Neuroblastoma is a deadly childhood cancer, and MYCN-amplified neuroblastoma (MNA-NB) patients have the worst prognoses and are therapy-resistant. While retinoic acid (RA) is beneficial for some neuroblastoma patients, the cause of RA resistance is unknown. Thus, there remains a need for new therapies to treat neuroblastoma. Here we explored the possibility of combining a MYCN-specific antigene oligonucleotide BGA002 and RA as therapeutic approach to restore sensitivity to RA in NB. METHODS: By molecular and cellular biology techniques, we assessed the combined effect of the two compounds in NB cell lines and in a xenograft mouse model MNA-NB. RESULTS: We found that MYCN-specific inhibition by BGA002 in combination with RA (BGA002-RA) act synergistically and overcame resistance in NB cell lines. BGA002-RA also reactivated neuron differentiation (or led to apoptosis) and inhibited invasiveness capacity in MNA-NB. Moreover, we found that neuroblastoma had the highest level of mRNA expression of mTOR pathway genes, and that BGA002 led to mTOR pathway inhibition followed by autophagy reactivation in MNA-NB cells, which was strengthened by BGA002-RA. BGA002-RA in vivo treatment also eliminated tumor vascularization in a MNA-NB mouse model and significantly increased survival. CONCLUSION: Taken together, MYCN modulation mediates the therapeutic efficacy of RA and the development of RA resistance in MNA-NB. Furthermore, by targeting MYCN, a cancer-specific mTOR pathway inhibition occurs only in MNA-NB, thus avoiding the side effects of targeting mTOR in normal cells. These findings warrant clinical testing of BGA002-RA as a strategy for overcoming RA resistance in MNA-NB.


Asunto(s)
Neuroblastoma , Tretinoina , Animales , Niño , Humanos , Ratones , Apoptosis , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Serina-Treonina Quinasas TOR , Tretinoina/farmacología , Tretinoina/uso terapéutico
12.
Front Microbiol ; 12: 711000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603239

RESUMEN

Bacillus mycoides SeITE01 is an environmental isolate that transforms the oxyanion selenite ( SeO 3 2 - ) into the less bioavailable elemental selenium (Se0) forming biogenic selenium nanoparticles (Bio-SeNPs). In the present study, the reduction of sodium selenite (Na2SeO3) by SeITE01 strain and the effect of SeO 3 2 - exposure on the bacterial cells was examined through untargeted metabolomics. A time-course approach was used to monitor both cell pellet and cell free spent medium (referred as intracellular and extracellular, respectively) metabolites in SeITE01 cells treated or not with SeO 3 2 - . The results show substantial biochemical changes in SeITE01 cells when exposed to SeO 3 2 - . The initial uptake of SeO 3 2 - by SeITE01 cells (3h after inoculation) shows both an increase in intracellular levels of 4-hydroxybenzoate and indole-3-acetic acid, and an extracellular accumulation of guanosine, which are metabolites involved in general stress response adapting strategies. Proactive and defensive mechanisms against SeO 3 2 - are observed between the end of lag (12h) and beginning of exponential (18h) phases. Glutathione and N-acetyl-L-cysteine are thiol compounds that would be mainly involved in Painter-type reaction for the reduction and detoxification of SeO 3 2 - to Se0. In these growth stages, thiol metabolites perform a dual role, both acting against the toxic and harmful presence of the oxyanion and as substrate or reducing sources to scavenge ROS production. Moreover, detection of the amino acids L-threonine and ornithine suggests changes in membrane lipids. Starting from stationary phase (24 and 48h), metabolites related to the formation and release of SeNPs in the extracellular environment begin to be observed. 5-hydroxyindole acetate, D-[+]-glucosamine, 4-methyl-2-oxo pentanoic acid, and ethanolamine phosphate may represent signaling strategies following SeNPs release from the cytoplasmic compartment, with consequent damage to SeITE01 cell membranes. This is also accompanied by intracellular accumulation of trans-4-hydroxyproline and L-proline, which likely represent osmoprotectant activity. The identification of these metabolites suggests the activation of signaling strategies that would protect the bacterial cells from SeO 3 2 - toxicity while it is converting into SeNPs.

13.
Bioresour Technol ; 335: 125289, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34015569

RESUMEN

This research investigated for the first time the influence of the single fractions (proteins, lipids, starch, cellulose, fibers and sugars) composing Household Food Wastes on Volatile Fatty Acids (VFA). A production at different pH (uncontrolled, 5.5 and 7.0): both the amount and profile of VFA were investigated. It was found that fractions rich in proteins and starch led to the greatest VFA productions (12-15 g/L), especially at neutral pH condition. On the contrary, fractions rich in cellulose, fibers, and sugars showed a very low VFA production (<2 g/L). The chemical nature of HFW influenced the speciation of the microbial communities too. Lactobacillaceae family was highly represented in proteins-, starch-, fibers and sugars-rich substrates and Atopobiaceae, Eggerthellaceae, Acidaminococcaceae and Veillonellaceae displayed positive correlation to VFAs production. Instead, Comamonadaceae showed high relative abundance in lipids- and cellulose-rich fraction and was negatively correlated to the VFAs generation.


Asunto(s)
Alimentos , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Ácidos Grasos Volátiles , Fermentación , Concentración de Iones de Hidrógeno
14.
Front Oncol ; 11: 625207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718189

RESUMEN

A wide range of malignancies presents MYCN amplification (MNA) or dysregulation. MYCN is associated with poor prognosis and its over-expression leads to several dysregulations including metabolic reprogramming, mitochondria alteration, and cancer stem cell phenotype. Some hints suggest that MYCN overexpression leads to cancer immune-escape. However, this relationship presents various open questions. Our work investigated in details the relationship of MYCN with the immune system, finding a correlated immune-suppressive phenotype in neuroblastoma (NB) and different cancers where MYCN is up-regulated. We found a downregulated Th1-lymphocytes/M1-Macrophages axis and upregulated Th2-lymphocytes/M2-macrophages in MNA NB patients. Moreover, we unveiled a complex immune network orchestrated by N-Myc and we identified 16 genes modules associated to MNA NB. We also identified a MYCN-associated immune signature that has a prognostic value in NB and recapitulates clinical features. Our signature also discriminates patients with poor survival in non-MNA NB patients where MYCN expression is not discriminative. Finally, we showed that targeted inhibition of MYCN by BGA002 (anti-MYCN antigene PNA) is able to restore NK sensibility in MYCN-expressing NB cells. Overall, our study unveils a MYCN-driven immune network in NB and shows a therapeutic option to restore sensibility to immune cells.

15.
Microorganisms ; 9(2)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498710

RESUMEN

An evaluation was conducted of the colonization of Pseudomonas protegens MP12, a plant-growth promoting and antagonistic strain, inoculated in vine plants during a standard process of grapevine nursery propagation. Three in vivo inoculation protocols (endophytic, rhizospheric, and epiphytic) were implemented and monitored by means of both culture-dependent and independent techniques. Endophytic treatment resulted in the colonization of the bacterium inside the vine cuttings, which spread to young leaves during the forcing period. Microscopy analysis performed on transformed dsRed-tagged P. protegens MP12 cells confirmed the bacterium's ability to penetrate the inner part of the roots. However, endophytic MP12 strain was no longer detected once the plant materials had been placed in the vine nursery field. The bacterium also displayed an ability to colonize the rhizosphere and, when the plants were uprooted at the end of the vegetative season, its persistence was confirmed. Epiphytic inoculation, performed by foliar spraying of cell suspension, was effective in controlling artificially-induced Botrytis cinerea infection in detached leaves. The success of rhizospheric and leaf colonization in vine plants suggests potential for the future exploitation of P. protegens MP12 as biofertilizer and biopesticide. Further investigation is required into the stability of the bacterium's colonization of vine plants under real-world conditions in vineyards.

16.
ACS Sustain Chem Eng ; 9(28): 9455-9464, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35059238

RESUMEN

Polyhydroxyalkanoates (PHAs) are versatile biodegradable polymers produced by bacteria and are suitable for many downstream applications. They can be produced inexpensively from mixed microbial cultures under feast and famine conditions in the presence of biobased volatile fatty acids (VFAs). Here, we investigated the effect of changing the sludge retention time (SRT) and the addition of fermented cellulosic primary sludge (CPS) as a carbon source on the selection of PHA-storing biomass when applying the feast and famine strategy under aerobic and anoxic conditions, respectively. Increasing the SRT from 5 to 7-10 days enhanced PHA yields under feast conditions from 0.18 gCODPHA/gCODVFA (period 1) to 0.40 gCODPHA/gCODVFA (period 2). The use of fermented CPS as a carbon source (period 3) increased PHA yields to 0.62 gCODPHA/gCODVFA despite the presence of biodegradable non-VFA fractions. Microbial characterization by denaturing gradient gel electrophoresis and fluorescence in situ hybridization revealed high microbial speciation during the three experimental periods. In period 3, the dominant genera were Thauera, Paracoccus, and Azoarcus, which accounted for ∼95% of the total microbial biomass.

17.
Microb Biotechnol ; 14(1): 198-212, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068075

RESUMEN

Biogenic metal/metalloid nanoparticles of microbial origin retain a functional biomolecular capping layer that confers structural stability. Little is known about the composition of such capping material. In this study, selenium nanoparticles (SeNPs) synthesized by five different bacterial strains underwent comparative analysis with newly proposed protocols for quantifying the concentration of carbohydrates, proteins and lipids present in capping layers. SeNPs were therefore treated with two different detergents to remove portions of the surrounding caps in order to assess the resulting effects. Capping material quantification was carried out along with the measure of parameters such as hydrodynamic diameter, polydispersity and surface charge. SeNPs from the five strains showed differences in their distinct biomolecule ratios. On the other hand, structural changes in the nanoparticles induced by detergents did not correlate with the amounts of capping matrix removed. Thus, the present investigation suggests a hypothesis to describe capping layer composition of the bacterial SeNPs: some biomolecules are bound more strongly than others to the core metalloid matrix, so that the diverse capping layer components differentially contribute to the overall structural characteristics of the nanoparticles. Furthermore, the application of the approach here in combining quantification of cap-associated biomolecules with the measurement of structural integrity-related parameters can give the biogenic nanomaterial field useful information to construct a data bank on biogenically synthesized nanostructures.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Selenio , Bacterias , Carbohidratos
18.
Crit Rev Biotechnol ; 40(8): 1250-1264, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32854560

RESUMEN

Microbial bio-transformations of the essential trace element selenium are now recognized to occur among a wide variety of microorganisms. These transformations are used to convert this element into its assimilated form of selenocysteine, which is at the active center of a number of key enzymes, and to produce selenium nanoparticles, quantum dots, metal selenides, and methylated selenium species that are indispensable for biotechnological and bioremediation applications. The focus of this review is to present the state-of-the-art of all aspects of the investigations into the bacterial transformations of selenium species, and to consider the characterization and biotechnological uses of these transformations and their products.


Asunto(s)
Biotecnología , Selenio/metabolismo , Selenoproteínas/metabolismo , Transformación Bacteriana , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Biopelículas
19.
Microorganisms ; 8(1)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936600

RESUMEN

PFASs (perfluoroalkyl and polyfluoroalkyl substances) are highly fluorinated, aliphatic, synthetic compounds with high thermal and chemical stability as well as unique amphiphilic properties which make them ingredients in a range of industrial processes. PFASs have attracted consideration due to their persistence, toxicity and bioaccumulation tendency in the environment. Recently, attention has begun to be addressed to shorter-chain PFASs, such as perfluorohexane sulfonate [PFHxS], apparently less toxic to and more easily eliminated from lab animals. However, short-chain PFASs represent end-products from the transformation of fluorotelomers whose biotic breakdown reactions have not been identified to date. This means that such emergent pollutants will tend to accumulate and persist in ecosystems. Since we are just learning about the interaction between short-chain PFASs and microorganisms, this study reports on the response to PFHxS of two Pseudomonas sp. strains isolated from environmental matrices contaminated by PFASs. The PFHxS bioaccumulation potential of these strains was unveiled by exploiting different physiological conditions as either axenic or mixed cultures under alkanothrofic settings. Moreover, electron microscopy revealed nonorthodox features of the bacterial cells, as a consequence of the stress caused by both organic solvents and PFHxS in the culturing substrate.

20.
Cancer Res ; 79(24): 6166-6177, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615807

RESUMEN

Approximately half of high-risk neuroblastoma is characterized by MYCN amplification. N-Myc promotes tumor progression by inducing cell growth and inhibiting differentiation. MYCN has also been shown to play an active role in mitochondrial metabolism, but this relationship is not well understood. Although N-Myc is a known driver of the disease, it remains a target for which no therapeutic drug exists. Here, we evaluated a novel MYCN-specific antigene PNA oligonucleotide (BGA002) in MYCN-amplified (MNA) or MYCN-expressing neuroblastoma and investigated the mechanism of its antitumor activity. MYCN mRNA and cell viability were reduced in a broad set of neuroblastoma cell lines following BGA002 treatment. Furthermore, BGA002 decreased N-Myc protein levels and apoptosis in MNA neuroblastoma. Analysis of gene expression data from patients with neuroblastoma revealed that MYCN was associated with increased reactive oxygen species (ROS), downregulated mitophagy, and poor prognosis. Inhibition of MYCN caused profound mitochondrial damage in MNA neuroblastoma cells through downregulation of the mitochondrial molecular chaperone TRAP1, which subsequently increased ROS. Correspondingly, inhibition of MYCN reactivated mitophagy. Systemic administration of BGA002 downregulated N-Myc and TRAP1, with a concomitant decrease in MNA neuroblastoma xenograft tumor weight. In conclusion, this study highlights the role of N-Myc in blocking mitophagy in neuroblastoma and in conferring protection to ROS in mitochondria through upregulation of TRAP1. BGA002 is a potently improved MYCN-specific antigene oligonucleotide that reverts N-Myc-dysregulated mitochondrial pathways, leading to loss of the protective effect of N-Myc against mitochondrial ROS. SIGNIFICANCE: A second generation antigene peptide oligonucleotide targeting MYCN induces mitochondrial damage and inhibits growth of MYCN-amplified neuroblastoma cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/patología , Ácidos Nucleicos de Péptidos/farmacología , Adolescente , Adulto , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Niño , Preescolar , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lactante , Recién Nacido , Estimación de Kaplan-Meier , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Proteína Proto-Oncogénica N-Myc/antagonistas & inhibidores , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/mortalidad , Ácidos Nucleicos de Péptidos/genética , Ácidos Nucleicos de Péptidos/uso terapéutico , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...