Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Article En | MEDLINE | ID: mdl-38757777

A direct soft imprint lithography was proposed to realize the direct fabrication of residue-free, well-shaped functional patterns through a single step. This imprint method requires only a simply prepared isopropanol-treated polydimethylsiloxane (PDMS) stamp without any additional resists. Residue-free Ag patterns were successfully fabricated on different substrates by directly imprinting the Ag ink with the isopropanol-treated PDMS stamp. Furthermore, the coffee-ring effect of the imprinting Ag patterns can be eliminated by optimizing the imprinting time, isopropanol-treating time, and imprinting temperatures. Studies show that the residual Ag ink in the contact region can be absorbed by the isopropanol-treated PDMS stamp due to the "like dissolves like" principle. Finally, this method was employed to fabricate the Ag electrodes for the thin-film transistors, attaining a mobility of ∼8 cm2 V-1 s-1, which is comparable to those with vacuum-processed electrodes. This process provides a simple, low-cost, residue-free, coffee-ring-free, and fast patterning method in the field of microelectronics.

2.
Angew Chem Int Ed Engl ; 63(15): e202320173, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38340073

Organic single crystals quickly emerge as dense yet light and nearly defect-free media for emissive elements. Integration of functionalities and control over the emissive properties is currently being explored for a wide range of these materials to benchmark their performance against organic emissive materials diluted in powders or films. Here, we report mechanically flexible emissive chiral organic crystals capable of an unprecedented combination of fast, reversible, and low-fatigue responses. UV-excited single crystals of both enantiomers of the material, 4-chloro-2-(((1-phenylidene)imino)methyl)phenol, exhibit a drastic yet reversible change in the emission color from green to orange-yellow within a second and can be cycled at least 2000 times. The photoresponse was found to depend strongly on the excitation intensity and temperature. Combining chirality, mechanical compliance, rapid emission switching, multiple responses, and writability by UV light, this material provides a unique and versatile platform for developing organic crystal-based materials for on-demand signal transfer, information storage, and cryptography.

3.
Adv Mater ; 36(19): e2310811, 2024 May.
Article En | MEDLINE | ID: mdl-38358297

Detecting short-wavelength infrared (SWIR) light has underpinned several emerging technologies. However, the development of highly sensitive organic photodetectors (OPDs) operating in the SWIR region is hindered by their poor external quantum efficiencies (EQEs) and high dark currents. Herein, the development of high-sensitivity SWIR-OPDs with an efficient photoelectric response extending up to 1.3 µm is reported. These OPDs utilize a new ultralow-bandgap molecular semiconductor featuring a quinoidal tricyclic electron-deficient central unit and multiple non-covalent conformation locks. The SWIR-OPD achieves an unprecedented EQE of 26% under zero bias and an even more impressive EQE of up to 41% under a -4 V bias at 1.10 µm, effectively pushing the detection limit of silicon photodetectors. Additionally, the low energetic disorder and trap density in the active layer lead to significant suppression of thermal-generation carriers and dark current, resulting in excellent detectivity (Dsh *) exceeding 1013 Jones from 0.50 to 1.21 µm and surpassing 1012 Jones even at 1.30 µm under zero bias, marking the highest achievements for OPDs beyond the silicon limit to date. Validation with photoplethysmography measurements, a spectrometer prototype in the 0.35-1.25 µm range, and image capture under 1.20 µm irradiation demonstrate the extensive applications of this SWIR-OPD.

4.
Small ; : e2310847, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38385814

Sensing pressure and temperature are two important functions of human skin that integrate different types of tactile receptors. In this paper, a deformable artificial flexible multi-stimulus-responsive sensor is demonstrated that can distinguish mechanical pressure from temperature by measuring the impedance and the electrical phase at the same frequency without signal interference. The electrical phase, which is used for measuring the temperature, is totally independent of the pressure by controlling the surface micro-shapes and the ion content of the ionic film. By doping the counter-ion exchange reagent into the ionic liquid before pouring, the upper temperature measuring limit increases from 35 to 50 °C, which is higher than the human body temperature and the ambient temperature on Earth. The sensor shows high sensitivity to pressure (up to 0.495 kPa-1 ) and a wide temperature sensing range (-10 to 50 °C). A multimodal ion-electronic skin (IEM -skin) with an 8 × 8 multi-stimulus-responsive sensor array is fabricated and can successfully sense the distribution of temperature and pressure at the same time. Finally, the sensors are used for monitoring the touching motions of a robot-arm finger controlled by a remote interactive glove and successfully detect the touching states and the temperature changes of different objects.

5.
Article En | MEDLINE | ID: mdl-38096430

Organic electrochemical transistors (OECTs) offer significant advantages in electrophysiological applications, primarily due to their ability to facilitate ionic-to-electronic conversion and establish a direct interface with the surrounding aqueous environments by using organic mixed ionic-electronic conductors. This study employs a side-chain free n-type conducting polymer, poly(benzodifurandione) (PBFDO), as the channel material in OECTs to scrutinize the interplay between various ion concentrations in electrolytes and the conjugated polymer and to assess their subsequent impact on device performance. Our findings reveal that PBFDO-based OECTs demonstrate superior transfer characteristics, attributed to their high conductivity and remarkable stability in aqueous solutions. Interestingly, the ion concentration does not alter the electronic band structure of PBFDO during the doping process, but a high-salt-concentration electrolyte could accelerate the electrochemical process compared to its counterparts. Furthermore, the diluted solution significantly enhances the surface roughness and decreases the crystalline coherence length of the film compared with concentrated solutions. A quantitative analysis utilizing an electrochemical quartz crystal microbalance discloses that the electrolyte ions penetrate the PBFDO film, inducing the absorption of a fraction of water molecules, which is pronounced in diluted solutions and negligible in their concentrated counterparts. This notable swelling of the polymer in diluted solutions potentially hampers the transport of charge carriers, consequently diminishing the OECT performance. This research elucidates a direct correlation between microstructure alterations and device performance during operation, paving the way for the optimization of ionic and electronic conductivity in polymers to foster the development of high-performance organic electronic devices.

6.
Nat Commun ; 14(1): 7582, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37990025

Woven architectures are prepared by physical entanglement of fibrous components to expand one-dimensional material into two-dimensional sheets with enhanced strength and resilience to wear. Here, we capitalize on the elastic properties of long organic crystals with a high aspect ratio to prepare an array of centimeter-size woven network structures. While being robust to mechanical impact, the woven patches are also elastic due to effective stress dissipation by the elasticity of the individual warp and weft crystals. The thermal stability of component crystals translates into favorable thermoelastic properties of the porous woven structures, where the network remains elastic over a range of 300 K. By providing means for physical entanglement of organic crystals, the weaving circumvents the natural limitation of the small size of slender organic crystals that is determined by their natural growth, thereby expanding the prospects for applications of organic crystals from one-dimensional entities to expandable, two-dimensional robust structures.

7.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Article En | MEDLINE | ID: mdl-37630921

All-inorganic perovskite nanocrystals (NCs) of CsPbX3 (X = Cl, Br, I) are promising for displays due to wide color gamut, narrow emission bandwidth, and high photoluminescence quantum yield (PLQY). However, pure red perovskite NCs prepared by mixing halide ions often result in defects and spectral instabilities. We demonstrate a method to prepare stable pure red emission and high-PLQY-mixed-halide perovskite NCs through simultaneous halide-exchange and ligand-exchange. CsPbBr3 NCs with surface organic ligands are first synthesized using the ligand-assisted reprecipitation (LARP) method, and then ZnI2 is introduced for anion exchange to transform CsPbBr3 to CsPbBrxI3-x NCs. ZnI2 not only provides iodine ions but also acts as an inorganic ligand to passivate surface defects and prevent ion migration, suppressing non-radiative losses and halide segregation. The luminescence properties of CsPbBrxI3-x NCs depend on the ZnI2 content. By regulating the ZnI2 exchange process, red CsPbBrxI3-x NCs with organic/inorganic hybrid ligands achieve near-unity PLQY with a stable emission peak at 640 nm. The CsPbBrxI3-x NCs can be combined with green CsPbBr3 NCs to construct white light-emitting diodes with high-color gamut. Our work presents a facile ion exchange strategy for preparing spectrally stable mixed-halide perovskite NCs with high PLQY, approaching the efficiency limit for display or lighting applications.

8.
Nat Commun ; 14(1): 3627, 2023 Jun 19.
Article En | MEDLINE | ID: mdl-37336878

The performance of any engineering material is naturally limited by its structure, and while each material suffers from one or multiple shortcomings when considered for a particular application, these can be potentially circumvented by hybridization with other materials. By combining organic crystals with MXenes as thermal absorbers and charged polymers as adhesive counter-ionic components, we propose a simple access to flexible hybrid organic crystal materials that have the ability to mechanically respond to infrared light. The ensuing hybrid organic crystals are durable, respond fast, and can be cycled between straight and deformed state repeatedly without fatigue. The point of flexure and the curvature of the crystals can be precisely controlled by modulating the position, duration, and power of thermal excitation, and this control can be extended from individual hybrid crystals to motion of ordered two-dimensional arrays of such crystals. We also demonstrate that excitation can be achieved over very long distances (>3 m). The ability to control the shape with infrared light adds to the versatility in the anticipated applications of organic crystals, most immediately in their application as thermally controllable flexible optical waveguides for signal transmission in flexible organic electronics.

9.
Opt Lett ; 48(10): 2583-2586, 2023 May 15.
Article En | MEDLINE | ID: mdl-37186714

The reported antimony selenide (Sb2Se3) photodetectors (PDs) are still far away from color camera applications mainly due to the high operation temperature required in chemical vapor deposition (CVD) and the lack of high-density PD arrays. In this work, we propose a Sb2Se3/CdS/ZnO PD created by physical vapor deposition (PVD) operated at room temperature. Using PVD, a uniform film can be obtained, so the optimized PD has excellent photoelectric performance with high responsivity (250 mA/W), high detectivity (5.6 × 1012 Jones), low dark current (∼10-9 A), and short response time (rise: < 200 µs; decay: < 200 µs). With the help of advanced computational imaging technology, we successfully demonstrate color imaging applications by the single Sb2Se3 PD; thus, we expect this work can bring Sb2Se3 PDs in color camera sensors closer.

10.
Chem Soc Rev ; 52(9): 3098-3169, 2023 May 09.
Article En | MEDLINE | ID: mdl-37070570

In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.

11.
Nat Commun ; 14(1): 2287, 2023 Apr 21.
Article En | MEDLINE | ID: mdl-37085510

The capability of stimulated response by mechanical deformation to induce motion or actuation is the foundation of lightweight organic, dynamic materials for designing light and soft robots. Various biomimetic soft robots are constructed to demonstrate the vast versatility of responses and flexibility in shape-shifting. We now report that the integration of organic molecular crystals and polymers brings about synergistic improvement in the performance of both materials as a hybrid materials class, with the polymers adding hygroresponsive and thermally responsive functionalities to the crystals. The resulting hybrid dynamic elements respond within milliseconds, which represents several orders of magnitude of improvement in the time response relative to some other type of common actuators. Combining molecular crystals with polymers brings crystals as largely overlooked materials much closer to specific applications in soft (micro)robotics and related fields.

12.
ACS Appl Mater Interfaces ; 15(14): 18372-18378, 2023 Apr 12.
Article En | MEDLINE | ID: mdl-36987738

High-performance phototransistor-based solar-blind (200-280 nm) ultraviolet (UV) photodetectors (PDs) are constructed with a low-cost thin-film ZnO/Ga2O3 heterojunction. The optimized PD shows high spectral selectivity (R254/R365 > 1 × 103) with a photo-to-dark current ratio of ∼104, a responsivity of 113 mA/W, a detectivity of 1.25 × 1012 Jones, and a response speed of 41 ms under 254 nm UV light irradiation. It is found that the gate electrode of a three-terminal phototransistor can amplify the responsivity and increase the photo-to-dark current ratio because of the different densities of field-induced electrons at different gate biases. In addition, the built-in electric field at the ZnO/Ga2O3 heterojunction interface can control the distribution of the photoinduced electrons and the total conductivity of the heterojunction, which can further enhance device performance. Together with the simple fabrication process, the achieved results suggest that the three-terminal ZnO/Ga2O3 heterojunction phototransistor is a promising candidate for highly sensitive solar-blind PDs.

13.
ACS Appl Mater Interfaces ; 15(5): 7175-7183, 2023 Feb 08.
Article En | MEDLINE | ID: mdl-36718854

Reducing the dark current (Jd) under reverse bias while maintaining a high external quantum efficiency (EQE) is essential for the practical application of organic photodiodes (OPDs). However, the high Jd of OPDs is generally difficult to reduce because its origin in organic photodiodes is still not well understood and is strongly temperature dependent. To address the issues related to high Jd in typical OPDs, we investigate fullerene-based OPDs with various donor concentrations. It is surprising that OPDs with a low donor concentration in the active layer can achieve a very low Jd of 1.68 × 10-7 mA cm-2 at a reverse bias of -2 V, which is almost temperature-independent owing to the low polymer content. More importantly, the fullerene-based OPDs with a low donor concentration of 5 wt % can still achieve an external quantum efficiency (EQE) as high as 40%, resulting in a promisingly high detectivity of above 1013 Jones at 300-800 nm compared to the OPDs with a standard donor/acceptor ratio. The presented optimized OPD device can also be used for real-time heart rate detection, indicating its potential for practical photon-sensing applications.

14.
Nat Commun ; 13(1): 7874, 2022 Dec 22.
Article En | MEDLINE | ID: mdl-36550106

Hybrid materials capitalize on the properties of individual materials to attain a specific combination of performance assets that is not available with the individual components alone. We describe a straightforward approach to preparation of sandwich-type hybrid dynamic materials that combine metals as electrically conductive components and polymers as bending, momentum-inducing components with flexible organic crystals as mechanically compliant and optically transducive medium. The resulting hybrid materials are conductive to both electricity and light, while they also respond to changes in temperature by deformation. Depending on the metal, their conductivity ranges from 7.9 to 21.0 S µm‒1. The elements respond rapidly to temperature by curling or uncurling in about 0.2 s, which in one typical case corresponds to exceedingly fast deformation and recovery rates of 2187.5° s‒1 and 1458.3° s‒1, respectively. In cyclic operation mode, their conductivity decreases less than 1% after 10,000 thermal cycles. The mechanothermal robustness and dual functionality favors these materials as candidates for a variety of applications in organic-based optics and electronics, and expands the prospects of application of organic crystals beyond the natural limits of their dynamic performance.

15.
ACS Appl Mater Interfaces ; 14(45): 51165-51174, 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36335598

The state-of-the-art poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-based organic electrochemical transistors (OECTs) are gaining importance for a variety of biological applications due to their mixed electronic and ionic conductivities featuring ion-to-electron conversion. A low operation voltage without sacrificing device performance is desired to realize long-term monitoring of biological activities. In the present work, oxoammonium salts with two different counterions (TEMPO+X-, where TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxoammonium; X = Br- and TFSI-) are employed as secondary dopants to modulate the device performance. Both oxoammonium salts feature a distinct dopant concentration-dependent doping effect, allowing precise control in improving the performance of OECTs. A zero-gate bias, corresponding to the maximum transconductance, and a low threshold voltage are realized by optimizing the dopant concentrations. In addition, TEMPO+TFSI- dopant exerts great capability in modulating the work function and in morphology reconstruction of PEDOT:PSS, ensuring a well-matched work function at the gold electrode-channel material interface and condensed microstructure stacking with an edge-on orientation in the doped PEDOT:PSS films. The synergistic effect of TEMPO and the TFSI- counterion endows the device with superior performance to its counterparts due to the resultant higher µC* figure, benefiting from the efficient injection/extraction of holes at the interface and enhanced intra- and inter-chain carrier transport. The excellent device performance makes the OECT a promising neuromorphic device to mimic basic brain functions.

16.
Nanomaterials (Basel) ; 12(21)2022 Nov 04.
Article En | MEDLINE | ID: mdl-36364678

The applications of thin-film transistors (TFTs) based on oxide semiconductors are limited due to instability under negative bias illumination stress (NBIS). Here, we report TFTs based on solution-processed In2O3 semiconductors doped with Pr4+ or Tb4+, which can effectively improve the NBIS stability. The differences between the Pr4+-doped In2O3 (Pr:In2O3) and Tb4+-doped In2O3 (Tb:In2O3) are investigated in detail. The undoped In2O3 TFTs with different annealing temperatures exhibit poor NBIS stability with serious turn-on voltage shift (ΔVon). After doping with Pr4+/Tb4+, the TFTs show greatly improved NBIS stability. As the annealing temperature increases, the Pr:In2O3 TFTs have poorer NBIS stability (ΔVon are -3.2, -4.8, and -4.8 V for annealing temperature of 300, 350, and 400 °C, respectively), while the Tb:In2O3 TFTs have better NBIS stability (ΔVon are -3.6, -3.6, and -1.2 V for annealing temperature of 300, 350, and 400 ℃, respectively). Further studies reveal that the improvement of the NBIS stability of the Pr4+/Tb4+:In2O3 TFTs is attributed to the absorption of the illuminated light by the Pr/Tb4fn-O2p6 to Pr/Tb 4fn+1-O2p5 charge transfer (CT) transition and downconversion of the light to nonradiative transition with a relatively short relaxation time compared to the ionization process of the oxygen vacancies. The higher NBIS stability of Tb:In2O3 TFTs compared to Pr:In2O3 TFTs is ascribed to the smaller ion radius of Tb4+ and the lower energy level of Tb 4f7 with a isotropic half-full configuration compared to that of Pr 4f1, which would make it easier for the Tb4+ to absorb the visible light than the Pr4+.

17.
Nat Commun ; 13(1): 5280, 2022 Sep 08.
Article En | MEDLINE | ID: mdl-36075917

Operation of temperature sensors over extended temperature ranges, and particularly in extreme conditions, poses challenges with both the mechanical integrity of the sensing material and the operational range of the sensor. With an emissive bendable organic crystalline material, here we propose that organic crystals can be used as mechanically robust and compliant fluorescence-based thermal sensors with wide range of temperature coverage and complete retention of mechanical elasticity. The exemplary material described remains elastically bendable and shows highly linear correlation with the emission wavelength and intensity between 77 K to 277 K, while it also transduces its own fluorescence in active waveguiding mode. This universal new approach expands the materials available for optical thermal sensing to a vast number of organic crystals as a new class of engineering materials and opens opportunities for the design of lightweight, organic fluorescence-based thermal sensors that can operate under extreme temperature conditions such as are the ones that will be encountered in future space exploration missions.

18.
Adv Mater ; 34(29): e2201827, 2022 Jul.
Article En | MEDLINE | ID: mdl-35561337

Infrared organic photodiodes have gained increasing attention due to their great application potentials in night vision, optical communication, and all-weather imaging. However, the commonly occurring high dark current and low detectivity impede infrared photodetectors from portable applications at room temperature. Herein, an efficient and generic doping compensation strategy is developed to improve the detectivity of infrared organic photodiodes. A series of n-type organic semiconductors is investigated, and it is found that doping compensation strategy not only reduces the trap density of states and dark currents, but also restrains the nonradiative recombination with improved charge transport and collection. As a result, an ultralow noise spectral density of 8 × 10-15 A Hz-1/2 as well as a high specific detectivity over 1013 Jones in 780-1070 nm is achieved at room temperature. More importantly, the high-performance infrared organic photodiodes can be successfully applied in high-pixel-density image arrays without patterning sensing layers. These findings provide important compensation design insights that will be crucial to further improve the performance of infrared organic photodiodes in the future.

19.
Nat Commun ; 13(1): 2322, 2022 Apr 28.
Article En | MEDLINE | ID: mdl-35484161

Elastic organic crystals are the materials foundation of future lightweight flexible electronic, optical and sensing devices, yet precise control over their deformation has not been accomplished. Here, we report a general non-destructive approach to remote bending of organic crystals. Flexible organic crystals are coupled to magnetic nanoparticles to prepare hybrid actuating elements whose shape can be arbitrarily and precisely controlled simply by using magnetic field. The crystals are mechanically and chemically robust, and can be flexed precisely to a predetermined curvature with complete retention of their macroscopic integrity at least several thousand times in contactless mode, in air or in a liquid medium. These crystals are used as optical waveguides whose light output can be precisely and remotely controlled by using a permanent magnet. This approach expands the range of applications of flexible organic crystals beyond the known limitations with other methods for control of their shape, and opens prospects for their direct implementation in flexible devices such as sensors, emitters, and other (opto)electronics.

20.
Adv Mater ; 34(14): e2200471, 2022 Apr.
Article En | MEDLINE | ID: mdl-35104918

Applications in extreme conditions, such as those encountered in space exploration, require lightweight materials that can retain their elasticity in extremely cold environments. However, cryogenic treatment of most soft polymeric and elastomeric materials results in complete loss of their ability for elastic flow, whereby such materials that are normally ductile become stiff, brittle, and prone to cracking. Here, a facile method for preparation of hybrid organic crystalline materials that are not only cryogenically robust but are also capable of large, recoverable, and reversible deformation at low temperatures is reported. To that end, flexible organic crystals are first mechanically reinforced by a polymer coating and combined with a thermally responsive polymer. The resulting hybrid materials respond linearly and reversibly to temperatures from -15 to -120 °C without fatigue in air as well as in cold vacuum. The approach proposed here not only circumvents one of the main drawbacks that are inherent to the amorphous nature and has thus far limited the applications of polymeric materials at low temperatures, but it also provides a cost-effective access to a myriad of lightweight sensing, electronic, optical or actuating devices that can operate in low-temperature environmental settings.

...