Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Ovarian Res ; 17(1): 115, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807213

RESUMEN

Zinc (Zn) is a crucial trace element essential for human growth and development, particularly for reproductive health. Previous research has shown a decrease in serum zinc concentration with age and individuals with conditions such as polycystic ovary syndrome (PCOS) and diabetes mellitus. However, the specific effects of zinc deficiency on the female reproductive system, especially ovarian function, are not fully understood. In our study, we observed a significant reduction in the total number of follicles and mature follicles in the zinc deficiency group. This reduction correlated with decreased level of anti-Mullerian hormone (AMH) and abnormal gene expression affecting hormone secretion regulation. Furthermore, we found that zinc deficiency disrupted mitochondrial dynamics, leading to oxidative stress in the ovaries, which further inhibited autophagy and increased ovarian apoptosis. These changes ultimately resulted in the failure of germinal vesicle breakdown (GVBD) and reduced oocyte quality. Meanwhile, administration of zinc glycine effectively alleviated the oocyte meiotic arrest caused by dietary zinc deficiency. In conclusion, our findings demonstrated that dietary zinc deficiency can affect hormone secretion and follicle maturation by impairing mitochondrial function and autophagy.


Asunto(s)
Mitocondrias , Folículo Ovárico , Zinc , Femenino , Zinc/deficiencia , Zinc/metabolismo , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/efectos de los fármacos , Mitocondrias/metabolismo , Animales , Autofagia , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Hormona Antimülleriana/metabolismo , Estrés Oxidativo , Ratones , Apoptosis , Humanos
2.
Ecotoxicol Environ Saf ; 252: 114593, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36724708

RESUMEN

Zinc, an essential trace mineral, plays a pivotal role in cell proliferation, maintenance of redox homeostasis, apoptosis, and aging. Serum zinc concentrations are reduced in patients with polycystic ovary syndrome (PCOS). However, the underlying mechanism of the effects of zinc deficiency on the female reproductive system, especially oocyte quality, has not been fully elucidated. Thus, we established an in vitro experimental model by adding N,N,N',N'-Tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) into the culture medium, and to determine the potential regulatory function of zinc during porcine oocytes maturation. In the present study, we found that zinc deficiency caused aberrant meiotic progress, accompanied by the disrupted cytoskeleton structure in porcine oocytes. Zinc deficiency impaired mitochondrial function and dynamics, leading to the increase of reactive oxygen species (ROS) and acetylation level of the antioxidative enzyme superoxide dismutase 2 (SOD2), eventually induced the occurrence of oxidative stress and early apoptosis. Moreover, zinc deficiency perturbed cytosolic Ca2+ homeostasis, lipid droplets formation, demonstrating the aberrant mitochondrial function in porcine oocytes. Importantly, we found that zinc deficiency in porcine oocytes induced the occurrence of mitophagy by activating the PTEN-induced kinase 1/Parkin signaling pathway. Collectively, our findings demonstrated that zinc was a critical trace mineral for maintaining oocyte quality by regulating mitochondrial function and autophagy in porcine oocytes.


Asunto(s)
Oligoelementos , Porcinos , Femenino , Animales , Oligoelementos/metabolismo , Mitofagia , Oocitos/metabolismo , Zinc/toxicidad , Zinc/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA