Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
J Intensive Care ; 12(1): 32, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227997

RESUMEN

BACKGROUND: Post-cardiac arrest syndrome (PCAS) presents a multifaceted challenge in clinical practice, characterized by severe neurological injury and high mortality rates despite advancements in management strategies. One of the important critical aspects of PCAS is post-arrest lung injury (PALI), which significantly contributes to poor outcomes. PALI arises from a complex interplay of pathophysiological mechanisms, including trauma from chest compressions, pulmonary ischemia-reperfusion (IR) injury, aspiration, and systemic inflammation. Despite its clinical significance, the pathophysiology of PALI remains incompletely understood, necessitating further investigation to optimize therapeutic approaches. METHODS: This review comprehensively examines the existing literature to elucidate the epidemiology, pathophysiology, and therapeutic strategies for PALI. A comprehensive literature search was conducted to identify preclinical and clinical studies investigating PALI. Data from these studies were synthesized to provide a comprehensive overview of PALI and its management. RESULTS: Epidemiological studies have highlighted the substantial prevalence of PALI in post-cardiac arrest patients, with up to 50% of survivors experiencing acute lung injury. Diagnostic imaging modalities, including chest X-rays, computed tomography, and lung ultrasound, play a crucial role in identifying PALI and assessing its severity. Pathophysiologically, PALI encompasses a spectrum of factors, including chest compression-related trauma, pulmonary IR injury, aspiration, and systemic inflammation, which collectively contribute to lung dysfunction and poor outcomes. Therapeutically, lung-protective ventilation strategies, such as low tidal volume ventilation and optimization of positive end-expiratory pressure, have emerged as cornerstone approaches in the management of PALI. Additionally, therapeutic hypothermia and emerging therapies targeting mitochondrial dysfunction hold promise in mitigating PALI-related morbidity and mortality. CONCLUSION: PALI represents a significant clinical challenge in post-cardiac arrest care, necessitating prompt diagnosis and targeted interventions to improve outcomes. Mitochondrial-related therapies are among the novel therapeutic strategies for PALI. Further clinical research is warranted to optimize PALI management and enhance post-cardiac arrest care paradigms.

2.
Biomedicines ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39200170

RESUMEN

The close interaction between neurons and astrocytes has been extensively studied. However, the specific behavior of these cells after ischemia-reperfusion injury and hypothermia remains poorly characterized. A growing body of evidence suggests that mitochondria function and putative transference between neurons and astrocytes may play a fundamental role in adaptive and homeostatic responses after systemic insults such as cardiac arrest, which highlights the importance of a better understanding of how neurons and astrocytes behave individually in these settings. Brain injury is one of the most important challenges in post-cardiac arrest syndrome, and therapeutic hypothermia remains the single, gold standard treatment for neuroprotection after cardiac arrest. In our study, we modeled ischemia-reperfusion injury by using in vitro enhanced oxygen-glucose deprivation and reperfusion (eOGD-R) and subsequent hypothermia (HPT) (31.5 °C) to cell lines of neurons (HT-22) and astrocytes (C8-D1A) with/without hypothermia. Using cell lysis (LDH; lactate dehydrogenase) as a measure of membrane integrity and cell viability, we found that neurons were more susceptible to eOGD-R when compared with astrocytes. However, they benefited significantly from HPT, while the HPT effect after eOGD-R on astrocytes was negligible. Similarly, eOGD-R caused a more significant reduction in adenosine triphosphate (ATP) in neurons than astrocytes, and the ATP-enhancing effects from HPT were more prominent in neurons than astrocytes. In both neurons and astrocytes, measurement of reactive oxygen species (ROS) revealed higher ROS output following eOGD-R, with a non-significant trend of differential reduction observed in neurons. HPT after eOGD-R effectively downregulated ROS in both cells; however, the effect was significantly more effective in neurons. Lipid peroxidation was higher after eOGD-R in neurons, while in astrocytes, the increase was not statistically significant. Interestingly, HPT had similar effects on the reduction in lipoperoxidation after eOGD-R with both types of cells. While glutathione (GSH) levels were downregulated after eOGD-R in both cells, HPT enhanced GSH in astrocytes, but worsened GSH in neurons. In conclusion, neuron and astrocyte cultures respond differently to eOGD-R and eOGD-R + HTP treatments. Neurons showed higher sensitivity to ischemia-reperfusion insults than astrocytes; however, they benefited more from HPT therapy. These data suggest that given the differential effects from HPT in neurons and astrocytes, future therapeutic developments could potentially enhance HPT outcomes by means of neuronal and astrocytic targeted therapies.

3.
Resuscitation ; 201: 110196, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38932555

RESUMEN

This scientific statement presents a conceptual framework for the pathophysiology of post-cardiac arrest brain injury, explores reasons for previous failure to translate preclinical data to clinical practice, and outlines potential paths forward. Post-cardiac arrest brain injury is characterized by 4 distinct but overlapping phases: ischemic depolarization, reperfusion repolarization, dysregulation, and recovery and repair. Previous research has been challenging because of the limitations of laboratory models; heterogeneity in the patient populations enrolled; overoptimistic estimation of treatment effects leading to suboptimal sample sizes; timing and route of intervention delivery; limited or absent evidence that the intervention has engaged the mechanistic target; and heterogeneity in postresuscitation care, prognostication, and withdrawal of life-sustaining treatments. Future trials must tailor their interventions to the subset of patients most likely to benefit and deliver this intervention at the appropriate time, through the appropriate route, and at the appropriate dose. The complexity of post-cardiac arrest brain injury suggests that monotherapies are unlikely to be as successful as multimodal neuroprotective therapies. Biomarkers should be developed to identify patients with the targeted mechanism of injury, to quantify its severity, and to measure the response to therapy. Studies need to be adequately powered to detect effect sizes that are realistic and meaningful to patients, their families, and clinicians. Study designs should be optimized to accelerate the evaluation of the most promising interventions. Multidisciplinary and international collaboration will be essential to realize the goal of developing effective therapies for post-cardiac arrest brain injury.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Humanos , Lesiones Encefálicas/etiología , Lesiones Encefálicas/terapia , Reanimación Cardiopulmonar/métodos , Reanimación Cardiopulmonar/normas , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia
4.
Microbiol Spectr ; 12(7): e0341523, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38864635

RESUMEN

Escherichia coli is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic E. coli, which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic E. coli strains. E. coli urine isolates were collected from DC residents aged 2 months to 17 years from the Children's National Medical Center Laboratory, 2013-2014. During the same period, E. coli isolates were collected from retail poultry products purchased from 15 sites throughout DC. A total of 52 urine and 56 poultry isolates underwent whole-genome sequencing, core genome phylogenetic analysis, and host-origin prediction by a Bayesian latent class model that incorporated data on the presence of mobile genetic elements (MGEs) among E. coli isolates from multiple vertebrate hosts. A total of 56 multilocus sequence types were identified among the isolates. Five sequence types-ST10, ST38, ST69, ST117, and ST131-were observed among both urine and poultry isolates. Using the Bayesian latent class model, we estimated that 19% (10/52) of the clinical E. coli isolates in our population were foodborne zoonotic strains. These data suggest that a substantial portion of pediatric UTIs in the Washington DC region may be caused by E. coli strains originating in food animals and likely transmitted via contaminated poultry meat.IMPORTANCEEscherichia coli UTIs are a heavy public health burden and can have long-term negative health consequences for pediatric patients. E. coli has an extremely broad host range, including humans, chickens, turkeys, pigs, and cattle. E. coli derived from food animals is a frequent contaminant of retail meat products, but little is known about the risk these strains pose to pediatric populations. Quantifying the proportion of pediatric UTIs caused by food-animal-derived E. coli, characterizing the highest-risk strains, and identifying their primary reservoir species could inform novel intervention strategies to reduce UTI burden in this vulnerable population. Our results suggest that retail poultry meat may be an important vehicle for pediatric exposure to zoonotic E. coli strains capable of causing UTIs. Vaccinating poultry against the highest-risk strains could potentially reduce poultry colonization, poultry meat contamination, and downstream pediatric infections.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Filogenia , Aves de Corral , Infecciones Urinarias , Secuenciación Completa del Genoma , Animales , Infecciones Urinarias/microbiología , Infecciones Urinarias/epidemiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/epidemiología , Humanos , Niño , Aves de Corral/microbiología , Adolescente , Preescolar , Lactante , Masculino , Femenino , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/clasificación , Escherichia coli/patogenicidad , Tipificación de Secuencias Multilocus , Genoma Bacteriano
5.
Circulation ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934122

RESUMEN

This scientific statement presents a conceptual framework for the pathophysiology of post-cardiac arrest brain injury, explores reasons for previous failure to translate preclinical data to clinical practice, and outlines potential paths forward. Post-cardiac arrest brain injury is characterized by 4 distinct but overlapping phases: ischemic depolarization, reperfusion repolarization, dysregulation, and recovery and repair. Previous research has been challenging because of the limitations of laboratory models; heterogeneity in the patient populations enrolled; overoptimistic estimation of treatment effects leading to suboptimal sample sizes; timing and route of intervention delivery; limited or absent evidence that the intervention has engaged the mechanistic target; and heterogeneity in postresuscitation care, prognostication, and withdrawal of life-sustaining treatments. Future trials must tailor their interventions to the subset of patients most likely to benefit and deliver this intervention at the appropriate time, through the appropriate route, and at the appropriate dose. The complexity of post-cardiac arrest brain injury suggests that monotherapies are unlikely to be as successful as multimodal neuroprotective therapies. Biomarkers should be developed to identify patients with the targeted mechanism of injury, to quantify its severity, and to measure the response to therapy. Studies need to be adequately powered to detect effect sizes that are realistic and meaningful to patients, their families, and clinicians. Study designs should be optimized to accelerate the evaluation of the most promising interventions. Multidisciplinary and international collaboration will be essential to realize the goal of developing effective therapies for post-cardiac arrest brain injury.

6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731864

RESUMEN

The human brain possesses three predominate phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS), which account for approximately 35-40%, 35-40%, and 20% of the brain's phospholipids, respectively. Mitochondrial membranes are relatively diverse, containing the aforementioned PC, PE, and PS, as well as phosphatidylinositol (PI) and phosphatidic acid (PA); however, cardiolipin (CL) and phosphatidylglycerol (PG) are exclusively present in mitochondrial membranes. These phospholipid interactions play an essential role in mitochondrial fusion and fission dynamics, leading to the maintenance of mitochondrial structural and signaling pathways. The essential nature of these phospholipids is demonstrated through the inability of mitochondria to tolerate alteration in these specific phospholipids, with changes leading to mitochondrial damage resulting in neural degeneration. This review will emphasize how the structure of phospholipids relates to their physiologic function, how their metabolism facilitates signaling, and the role of organ- and mitochondria-specific phospholipid compositions. Finally, we will discuss the effects of global ischemia and reperfusion on organ- and mitochondria-specific phospholipids alongside the novel therapeutics that may protect against injury.


Asunto(s)
Encéfalo , Paro Cardíaco , Mitocondrias , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Mitocondrias/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Paro Cardíaco/metabolismo , Transducción de Señal , Membranas Mitocondriales/metabolismo , Dinámicas Mitocondriales
8.
Life (Basel) ; 14(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38672748

RESUMEN

BACKGROUND: Mitochondrial dysfunction, which is triggered by systemic ischemia-reperfusion (IR) injury and affects various organs, is a key factor in the development of post-cardiac arrest syndrome (PCAS). Current research on PCAS primarily addresses generalized mitochondrial responses, resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. This review focuses on the organ-specific mitochondrial responses to IR injury, particularly examining the brain, heart, and kidneys, to highlight potential therapeutic strategies targeting mitochondrial dysfunction to enhance outcomes post-IR injury. METHODS AND RESULTS: We conducted a narrative review examining recent advancements in mitochondrial research related to IR injury. Mitochondrial responses to IR injury exhibit considerable variation across different organ systems, influenced by unique mitochondrial structures, bioenergetics, and antioxidative capacities. Each organ demonstrates distinct mitochondrial behaviors that have evolved to fulfill specific metabolic and functional needs. For example, cerebral mitochondria display dynamic responses that can be both protective and detrimental to neuronal activity and function during ischemic events. Cardiac mitochondria show vulnerability to IR-induced oxidative stress, while renal mitochondria exhibit a unique pattern of fission and fusion, closely linked to their susceptibility to acute kidney injury. This organ-specific heterogeneity in mitochondrial responses requires the development of tailored interventions. Progress in mitochondrial medicine, especially in the realms of genomics and metabolomics, is paving the way for innovative strategies to combat mitochondrial dysfunction. Emerging techniques such as mitochondrial transplantation hold the potential to revolutionize the management of IR injury in resuscitation science. CONCLUSIONS: The investigation into organ-specific mitochondrial responses to IR injury is pivotal in the realm of resuscitation research, particularly within the context of PCAS. This nuanced understanding holds the promise of revolutionizing PCAS management, addressing the unique mitochondrial dysfunctions observed in critical organs affected by IR injury.

9.
Front Immunol ; 15: 1362858, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545102

RESUMEN

Background: Cardiac arrest (CA) is a significant public health concern. There is the high imminent mortality and survival in those who are resuscitated is substantively compromised by the post-CA syndrome (PCAS), characterized by multiorgan ischemia-reperfusion injury (IRI). The inflammatory response in PCAS is complex and involves various immune cell types, including lymphocytes and myeloid cells that have been shown to exacerbate organ IRI, such as myocardial infarction. Purinergic signaling, as regulated by CD39 and CD73, has emerged as centrally important in the context of organ-specific IRI. Hence, comprehensive understanding of such purinergic responses may be likewise imperative for improving outcomes in PCAS. Methods: We have investigated alterations of immune cell populations after CA by utilizing rodent models of PCAS. Blood and spleen were collected after CA and resuscitation and underwent flow cytometry analysis to evaluate shifts in CD3+CD4+ helper T cells, CD3+CD8a+ cytotoxic T cells, and CD4/CD8a ratios. We then examined the expression of CD39 and CD73 across diverse cell types, including myeloid cells, T lymphocytes, and B lymphocytes. Results: In both rat and mouse models, there were significant increases in the frequency of CD3+CD4+ T lymphocytes in PCAS (rat, P < 0.01; mouse, P < 0.001), with consequently elevated CD4/CD8a ratios in whole blood (both, P < 0.001). Moreover, CD39 and CD73 expression on blood leukocytes were markedly increased (rat, P < 0.05; mouse, P < 0.01 at 24h). Further analysis in the experimental mouse model revealed that CD11b+ myeloid cells, with significant increase in their population (P < 0.01), had high level of CD39 (88.80 ± 2.05 %) and increased expression of CD73 (P < 0.05). CD19+ B lymphocytes showed slight increases of CD39 (P < 0.05 at 2h) and CD73 (P < 0.05 at 2h), while, CD3+ T lymphocytes had decreased levels of them. These findings suggested a distinct patterns of expression of CD39 and CD73 in these specific immune cell populations after CA. Conclusions: These data have provided comprehensive insights into the immune response after CA, highlighting high-level expressions of CD39 and CD73 in myeloid cells.


Asunto(s)
Paro Cardíaco , Roedores , Animales , Ratones , Ratas , Citometría de Flujo , Leucocitos , Linfocitos T Citotóxicos , 5'-Nucleotidasa/metabolismo
10.
J Transl Med ; 22(1): 230, 2024 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433198

RESUMEN

BACKGROUND: Mitochondrial transplantation (MTx) has emerged as a novel therapeutic strategy, particularly effective in diseases characterized by mitochondrial dysfunction. This review synthesizes current knowledge on MTx, focusing on its role in modulating immune responses and explores its potential in treating post-cardiac arrest syndrome (PCAS). METHODS: We conducted a comprehensive narrative review of animal and human studies that have investigated the effects of MTx in the context of immunomodulation. This included a review of the immune responses following critical condition such as ischemia reperfusion injury, the impact of MTx on these responses, and the therapeutic potential of MTx in various conditions. RESULTS: Recent studies indicate that MTx can modulate complex immune responses and reduce ischemia-reperfusion injury post-CA, suggesting MTx as a novel, potentially more effective approach. The review highlights the role of MTx in immune modulation, its potential synergistic effects with existing treatments such as therapeutic hypothermia, and the need for further research to optimize its application in PCAS. The safety and efficacy of autologous versus allogeneic MTx, particularly in the context of immune reactions, are critical areas for future investigation. CONCLUSION: MTx represents a promising frontier in the treatment of PCAS, offering a novel approach to modulate immune responses and restore cellular energetics. Future research should focus on long-term effects, combination therapies, and personalized medicine approaches to fully harness the potential of MTx in improving patient outcomes in PCAS.


Asunto(s)
Paro Cardíaco , Hipotermia Inducida , Daño por Reperfusión , Animales , Humanos , Terapia Combinada , Medicina de Precisión , Paro Cardíaco/terapia , Inmunomodulación , Daño por Reperfusión/terapia
11.
Am J Emerg Med ; 78: 182-187, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38301368

RESUMEN

OBJECTIVE: Oxygen consumption (VO2), carbon dioxide generation (VCO2), and respiratory quotient (RQ), which is the ratio of VO2 to VCO2, are critical indicators of human metabolism. To seek a link between the patient's metabolism and pathophysiology of critical illness, we investigated the correlation of these values with mortality in critical care patients. METHODS: This was a prospective, observational study conducted at a suburban, quaternary care teaching hospital. Age 18 years or older healthy volunteers and patients who underwent mechanical ventilation were enrolled. A high-fidelity automation device, which accuracy is equivalent to the gold standard Douglas Bag technique, was used to measure VO2, VCO2, and RQ at a wide range of fraction of inspired oxygen (FIO2). RESULTS: We included a total of 21 subjects including 8 post-cardiothoracic surgery patients, 7 intensive care patients, 3 patients from the emergency room, and 3 healthy volunteers. This study included 10 critical care patients, whose metabolic measurements were performed in the ER and ICU, and 6 died. VO2, VCO2, and RQ of survivors were 282 +/- 95 mL/min, 202 +/- 81 mL/min, and 0.70 +/- 0.10, and those of non-survivors were 240 +/- 87 mL/min, 140 +/- 66 mL/min, and 0.57 +/- 0.08 (p = 0.34, p = 0.10, and p < 0.01), respectively. The difference of RQ was statistically significant (p < 0.01) and it remained significant when the subjects with FIO2 < 0.5 were excluded (p < 0.05). CONCLUSIONS: Low RQ correlated with high mortality, which may potentially indicate a decompensation of the oxygen metabolism in critically ill patients.


Asunto(s)
Pulmón , Respiración Artificial , Humanos , Adolescente , Estudios Prospectivos , Calorimetría Indirecta/métodos , Consumo de Oxígeno , Dióxido de Carbono/metabolismo , Enfermedad Crítica/terapia , Oxígeno
12.
Artículo en Inglés | MEDLINE | ID: mdl-38374423

RESUMEN

BACKGROUND: Antibiotic use in food-producing animals can select for antibiotic resistance in bacteria that can be transmitted to people through contamination of food products during meat processing. Contamination resulting in foodborne illness contributes to adverse health outcomes. Some livestock producers have implemented antibiotic use reduction strategies marketed to consumers on regulated retail meat packaging labels ("label claims"). OBJECTIVE: We investigated whether retail meat label claims were associated with isolation of multidrug-resistant organisms (MDROs, resistant to ≥3 classes of antibiotics) from U.S. meat samples. METHODS: We utilized retail meat data from the U.S. Food and Drug Administration National Antimicrobial Resistance Monitoring System (NARMS) collected during 2016-2019 for bacterial contamination of chicken breast, ground turkey, ground beef, and pork chops. We used modified Poisson regression models to compare the prevalence of MDRO contamination among meat samples with any antibiotic restriction label claims versus those without such claims (i.e., conventionally produced). RESULTS: In NARMS, 62,338 meat samples were evaluated for bacterial growth from 2016-2019. Of these, 24,446 (39%) samples had label claims that indicated antibiotic use was restricted during animal production. MDROs were isolated from 2252 (4%) meat samples, of which 71% (n = 1591) were conventionally produced, and 29% (n = 661) had antibiotic restriction label claims. Compared with conventional samples, meat with antibiotic restriction label claims had a statistically lower prevalence of MDROs (adjusted prevalence ratio: 0.66; 95% CI: 0.61, 0.73). This relationship was consistent for the outcome of any bacterial growth. IMPACT: This repeated cross-sectional analysis of a nationally representative retail meat surveillance database in the United States supports that retail meats labeled with antibiotic restriction claims were less likely to be contaminated with MDROs compared with retail meat without such claims during 2016-2019. These findings indicate the potential for the public to become exposed to bacterial pathogens via retail meat and emphasizes a possibility that consumers could reduce their exposure to environmental reservoirs of foodborne pathogens that are resistant to antibiotics.

13.
Circulation ; 149(8): e914-e933, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38250800

RESUMEN

Every 10 years, the American Heart Association (AHA) Emergency Cardiovascular Care Committee establishes goals to improve survival from cardiac arrest. These goals align with broader AHA Impact Goals and support the AHA's advocacy efforts and strategic investments in research, education, clinical care, and quality improvement programs. This scientific statement focuses on 2030 AHA emergency cardiovascular care priorities, with a specific focus on bystander cardiopulmonary resuscitation, early defibrillation, and neurologically intact survival. This scientific statement also includes aspirational goals, such as establishing cardiac arrest as a reportable disease and mandating reporting of standardized outcomes from different sources; advancing recognition of and knowledge about cardiac arrest; improving dispatch system response, availability, and access to resuscitation training in multiple settings and at multiple time points; improving availability, access, and affordability of defibrillators; providing a focus on early defibrillation, in-hospital programs, and establishing champions for debriefing and review of cardiac arrest events; and expanding measures to track outcomes beyond survival. The ability to track and report data from these broader aspirational targets will potentially require expansion of existing data sets, development of new data sets, and enhanced integration of technology to collect process and outcome data, as well as partnerships of the AHA with national, state, and local organizations. The COVID-19 (coronavirus disease 2019) pandemic, disparities in COVID-19 outcomes for historically excluded racial and ethnic groups, and the longstanding disparities in cardiac arrest treatment and outcomes for Black and Hispanic or Latino populations also contributed to an explicit focus and target on equity for the AHA Emergency Cardiovascular Care 2030 Impact Goals.


Asunto(s)
COVID-19 , Reanimación Cardiopulmonar , Servicios Médicos de Urgencia , Paro Cardíaco , Paro Cardíaco Extrahospitalario , Estados Unidos/epidemiología , Humanos , American Heart Association , Objetivos , Paro Cardíaco/terapia , COVID-19/terapia , Paro Cardíaco Extrahospitalario/terapia
14.
EBioMedicine ; 99: 104909, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096689

RESUMEN

BACKGROUND: Escherichia coli sequence type 131 (ST131), specifically its fluoroquinolone-resistant H30R clade (ST131-H30R), is a global multidrug-resistant pathogen. The gut microbiome's role in ST131-H30R intestinal carriage is undefined. METHODS: Veterans and their household members underwent longitudinal fecal swab surveillance for ST131 in 2014-2018. The fecal microbiome was characterized by 16S rRNA qPCR and sequencing. We evaluated associations between ST131-H30R carriage and gut microbiome at baseline by random forest models to identify the most informative gut bacterial phyla and genera attributes for ST131 and ST131-H30R carriage status. Next, we assessed longitudinal associations between fecal microbiome and ST131-H30R carriage using a mixed-effects logistic regression with longitudinal measures. FINDINGS: Of the 519 participants, 78 were carriers of ST131, among whom 49 had ST131-H30R. At the baseline timepoint, H30R-positive participants had higher proportional abundances of Actinobacteria phylum (mean: 4.9% vs. 3.1%) than ST131-negative participants. H30R-positive participants also had higher abundances of Collinsella (mean: 2.3% vs. 1.1%) and lower abundances of Alistipes (mean: 2.1% vs. 2.6%) than ST131-negative participants. In the longitudinal analysis, Collinsella abundance correlated positively with ST131-H30R carriage status and negatively with the loss of ST131-H30R. Conversely, Alistipes corresponded with the loss and persistent absence of ST131-H30R even in the presence of a household exposure. INTERPRETATION: Abundances of specific fecal bacteria correlated with ST131-H30R carriage, persistence, and loss, suggesting their potential as targets for microbiome-based strategies to reduce carriage of ST131-H30R, a significant risk factor for invasive infections. FUNDING: This work was supported in part by National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award numbers R21AI117654 and UM1AI104681 and the Office of Research and Development, Department of Veterans Affairs. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Department of Veterans Affairs.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Humanos , Escherichia coli , Infecciones por Escherichia coli/microbiología , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Proteínas de Escherichia coli/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple
15.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139279

RESUMEN

Lysophosphatidic acid (LPA) serves as a fundamental constituent of phospholipids. While prior studies have shown detrimental effects of LPA in a range of pathological conditions, including brain ischemia, no studies have explored the impact of LPA in the context of cardiac arrest (CA). The aim of this study is to evaluate the effects of the intravenous administration of an LPA species containing oleic acid, LPA (18:1) on the neurological function of rats (male, Sprague Dawley) following 8 min of asphyxial CA. Baseline characteristics, including body weight, surgical procedure time, and vital signs before cardiac arrest, were similar between LPA (18:1)-treated (n = 10) and vehicle-treated (n = 10) groups. There was no statistically significant difference in 24 h survival between the two groups. However, LPA (18:1)-treated rats exhibited significantly improved neurological function at 24 h examination (LPA (18:1), 85.4% ± 3.1 vs. vehicle, 74.0% ± 3.3, p = 0.045). This difference was most apparent in the retention of coordination ability in the LPA (18:1) group (LPA (18:1), 71.9% ± 7.4 vs. vehicle, 25.0% ± 9.1, p < 0.001). Overall, LPA (18:1) administration in post-cardiac arrest rats significantly improved neurological function, especially coordination ability at 24 h after cardiac arrest. LPA (18:1) has the potential to serve as a novel therapeutic in cardiac arrest.


Asunto(s)
Lesiones Encefálicas , Paro Cardíaco , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Roedores , Paro Cardíaco/complicaciones , Paro Cardíaco/tratamiento farmacológico , Lisofosfolípidos
16.
Int J Angiol ; 32(4): 253-257, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37927842

RESUMEN

In this case report, we describe the clinical course of a complicated transplant renal artery (TRA) pseudoaneurysm, clinically featured by gross and massive hematuria one month after a kidney transplant was performed on a 50 year-old male patient. TRA pseudoaneurysm is a rare but potentially life-threatening complication that may result in bleeding, infection, graft dysfunction/loss, lower limb ischemia/loss, hemorrhagic shock, and death. TRA pseudoaneurysm treatment remains challenging as it needs to be tailored to the patient characteristics including hemodynamic stability, graft function, anatomy, presentation, and pseudoaneurysm features. This publication discusses the clinical scenario of massive gross hematuria that derived from a retroperitoneal hematoma which originated from an actively bleeding TRA pseudoaneurysm. This case highlights the combined approach of endovascular stent placement and subsequent transplant nephrectomy as a last resort in the management of intractable bleeding from a complicated TRA pseudoaneurysm. To the best of our knowledge, this is the first published case report of an actively bleeding TRA anastomotic pseudoaneurysm that caused a massive retroperitoneal bleed that in turn evacuated via the bladder after disrupting the ureter-to-bladder anastomosis. A temporizing hemostatic arterial stent placed percutaneously allowed for a safer and controlled emergency transplant nephrectomy.

17.
Int J Angiol ; 32(4): 262-268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37927847

RESUMEN

This case study describes a 45-year-old Caucasian male with a past medical history of obesity, hypertension, and non-insulin-dependent diabetes mellitus, who in the setting of coronavirus disease 2019 (COVID-19) pneumonia, developed portal vein thrombosis (PVT) presenting as an acute abdomen after hospital discharge from a cholecystitis episode. PVT is a very infrequent thromboembolic condition, classically occurring in patients with systemic conditions such as cirrhosis, malignancy, pancreatitis, diverticulitis, autoimmunity, and thrombophilia. PVT can cause serious complications, such as intestinal infarction, or even death, if not promptly treated. Due to the limited number of reports in the literature describing PVT in the COVID-19 setting, its prevalence, natural history, mechanism, and precise clinical features remain unknown. Therefore, clinical suspicion should be high for PVT, in any COVID-19 patient who presents with abdominal pain or associated signs and symptoms. To the best of our knowledge, this is the first report of COVID-19-associated PVT causing extensive thrombosis in the portal vein and its right branch, occurring in the setting of early-stage cirrhosis after a preceding episode of cholecystitis.

18.
Sci Rep ; 13(1): 21024, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030674

RESUMEN

Antibiotic-resistant infections are a global concern, especially those caused by multidrug-resistant (MDR) bacteria, defined as those resistant to more than three drug classes. The animal agriculture industry contributes to the antimicrobial resistant foodborne illness burden via contaminated retail meat. In the United States, retail meat is shipped across the country. Therefore, understanding geospatial factors that influence MDR bacterial contamination is vital to protect consumers and inform interventions. Using data available from the United States Food and Drug Administration's National Antimicrobial Resistance Monitoring System (NARMS), we describe retail meat shipping distances using processor and retailer locations and investigated this distance as a risk factor for MDR bacteria meat contamination using log-binomial regression. Meat samples collected during 2012-2014 totaled 11,243, of which 4791 (42.61%) were contaminated with bacteria and 835 (17.43%) of those bacteria were MDR. All examined geospatial factors were associated with MDR bacteria meat contamination. After adjustment for year and meat type, we found higher prevalence of MDR contamination among meat processed in the south (relative adjusted prevalence ratio [aPR] 1.35; 95% CI 1.06-1.73 when compared to the next-highest region), sold in Maryland (aPR 1.12; 95% CI 0.95-1.32 when compared to the next-highest state), and shipped from 194 to 469 miles (aPR 1.59; 95% CI 1.31-1.94 when compared to meats that traveled < 194 miles). However, sensitivity analyses revealed that New York sold the meat with the highest prevalence of MDR Salmonella contamination (4.84%). In this secondary analysis of NARMS data, both geographic location where products were sold and the shipping distance were associated with microbial contamination on retail meat.


Asunto(s)
Antibacterianos , Microbiología de Alimentos , Animales , Estados Unidos , Antibacterianos/farmacología , Carne/análisis , Salmonella , Farmacorresistencia Bacteriana Múltiple , Maryland , Pruebas de Sensibilidad Microbiana , Contaminación de Alimentos/análisis , Pollos/microbiología
19.
BMC Pulm Med ; 23(1): 390, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37840131

RESUMEN

OBJECTIVE: Using a system, which accuracy is equivalent to the gold standard Douglas Bag (DB) technique for measuring oxygen consumption (VO2), carbon dioxide generation (VCO2), and respiratory quotient (RQ), we aimed to continuously measure these metabolic indicators and compare the values between post-cardiothoracic surgery and critical care patients. METHODS: This was a prospective, observational study conducted at a suburban, quaternary care teaching hospital. Age 18 years or older patients who underwent mechanical ventilation were enrolled. RESULTS: We included 4 post-surgery and 6 critical care patients. Of those, 3 critical care patients died. The longest measurement reached to 12 h and 15 min and 50 cycles of repeat measurements were performed. VO2 of the post-surgery patients were 234 ± 14, 262 ± 27, 212 ± 16, and 192 ± 20 mL/min, and those of critical care patients were 122 ± 20, 189 ± 9, 191 ± 7, 191 ± 24, 212 ± 12, and 135 ± 21 mL/min, respectively. The value of VO2 was more variable in the post-surgery patients and the range of each patient was 44, 126, 71, and 67, respectively. SOFA scores were higher in non-survivors and there were negative correlations of RQ with SOFA. CONCLUSIONS: We developed an accurate system that enables continuous and repeat measurements of VO2, VCO2, and RQ. Critical care patients may have less activity in metabolism represented by less variable values of VO2 and VCO2 over time as compared to those of post-cardiothoracic surgery patients. Additionally, an alteration of these values may mean a systemic distinction of the metabolism of critically ill patients.


Asunto(s)
Cuidados Críticos , Consumo de Oxígeno , Humanos , Adolescente , Estudios Prospectivos , Calorimetría Indirecta/métodos , Respiración Artificial , Dióxido de Carbono/metabolismo
20.
Adv Exp Med Biol ; 1438: 217-222, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37845464

RESUMEN

Sudden cardiac arrest (CA) is the third leading cause of death. Immediate reoxygenation with high concentrations of supplemental oxygen (O2) during cardiopulmonary resuscitation (CPR) is recommended according to the current guidelines for adult CA. However, a point in controversy exists because of the known harm of prolonged exposure to 100% O2. Therefore, there have been much debate on an optimal use of supplemental O2, yet little is known about the duration and dosage of O2 administration. To test whether supplying a high concentration of O2 during CPR and post resuscitation is beneficial or harmful, rats subjected to 10-minute asphyxia CA were administered either 100% O2 (n = 8) or 30% O2 (n = 8) for 2 hours after CPR. Two hours after initiating CPR, the brain, lung, and heart tissues were collected to compare mRNA gene expression levels of inflammatory cytokines, apoptotic and oxidative stress-related markers. The 100% O2 group had significantly shorter time to return of spontaneous circulation (ROSC) than the 30% O2 group (62.9 ± 2.2 and 77.5 ± 5.9 seconds, respectively, P < 0.05). Arterial blood gas analysis revealed that the 100% O2 group had significantly higher PaCO2 (49.4 ± 4.9 mmHg and 43.0 ± 3.0 mmHg, P < 0.01), TCO2 (29.8 ± 2.7 and 26.6 ± 1.1 mmol/L, P < 0.05), HCO3- (28.1 ± 2.4 and 25.4 ± 1.2 mmol/L, P < 0.05), and BE (2.6 ± 2.3 and 0.1 ± 1.4 mmol/L, P < 0.05) at 2 hours after initiating CPR, but no changes in pH (7.37 ± 0.03 and 7.38 ± 0.03, ns). Inflammation- (Il6, Tnf) and apoptosis- (Casp3) related mRNA gene expression levels were significantly low in the 100% O2 group in the brain, however, oxidative stress moderator Hmox1 increased in the 100% O2 group. Likewise, mRNA gene expression of Icam1, Casp9, Bcl2, and Bax were low in the 100% O2 group in the lung. Contrarily, mRNA gene expression of Il1b and Icam1 were low in the 30% O2 group in the heart. Supplying 30% O2 during and after CPR significantly delayed the time to ROSC and increased inflammation-/apoptosis- related gene expression in the brain and lung, indicating that insufficient O2 was associated with unfavorable biological responses post CA, while prolonged exposure to high-concentration O2 should be still cautious in general.


Asunto(s)
Reanimación Cardiopulmonar , Ratas , Animales , Oxígeno , Inflamación , ARN Mensajero , Terapia por Inhalación de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA