Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
Nutrients ; 16(3)2024 Jan 29.
Article En | MEDLINE | ID: mdl-38337668

Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the overproduction of white blood cells, leading to symptoms such as fatigue, infections, and other complications. CML patients must take measures to prevent infections to mitigate the exacerbation of cancer cell proliferation and comorbidities. Methods: This study investigated whether vitamin C can suppress the hyperinflammatory activation of K-562 cells induced by lipopolysaccharide (LPS) and whether purinergic signaling (ATP and P2X7 receptor) and autophagy play a role in it. Two different doses of vitamin C (5 µg/mL and 10 µg/mL) were employed, along with the lysosome inhibitor chloroquine (CQ; 100 µM), administered 2 h prior to LPS stimulation (10 ng/mL) for a duration of 22 h in K-562 cells (3 × 105 cells/mL/well). Results: Both doses of vitamin C reduced the release of interleukin-6 (IL-6) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and tumor necrosis factor (TNF) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) induced by LPS. Furthermore, in LPS + CQ-stimulated cells, vitamin C at a concentration of 10 µg/mL inhibited the expression of LC3-II (p < 0.05). Conversely, both doses of vitamin C led to the release of the anti-inflammatory cytokine interleukin-10 (IL-10) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01), while only the 10 µg/mL dose of vitamin C induced the release of Klotho (10 µg/mL, p < 0.01). In addition, both doses of vitamin C reduced the accumulation of ATP (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and decreased the expression of the P2X7 receptor at the mRNA level. Conclusions: Vitamin C inhibits the hyperinflammatory state induced by LPS in K-562 cells, primarily by inhibiting the ATP accumulation, P2X7 receptor expression, and autophagy signaling.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Lipopolysaccharides , Humans , Lipopolysaccharides/pharmacology , Ascorbic Acid/pharmacology , Receptors, Purinergic P2X7 , Autophagy , Adenosine Triphosphate/pharmacology
2.
Article En | MEDLINE | ID: mdl-36078293

To evaluate the effect of high-intensity interval training (HIT) on the cardiorespiratory performance and substrate oxidation pattern in insulin-resistant and insulin-sensitive obese adolescents. METHODS: We recruited 25 obese adolescents in three schools, and trained them in six HIT sessions, comprising of six series at 100% and recovery at 50% peak velocity (Vpeak). For the evaluation, the participants were divided into two groups: insulin-resistant (IR, n = 12; HOMA index ≥3.16) and insulin-sensitive (IS, n = 13). All participants underwent cardiopulmonary and indirect calorimetry testing. We compared the effects of HIT before and after the intervention among the two groups. The data were analyzed using Student's t and Mann-Whitney (intergroup comparisons) and Student's t and Wilcoxon (pre- and post-training comparisons) tests; and Cohen's d (influence of HIT). RESULTS: There was a significant post-training increase in Vpeak, oxygen consumption (VO2), velocity (V), and heart rate (HR) at the exertion intensity at the first ventilatory anaerobic threshold (VAT1) in both groups (p < 0.05; d < 0.02). The exercise promoted changes in substrate oxidation rates of the groups, with an increase in carbohydrate oxidation (CHOox) for both IR (p = 0.064) and IS (p = 0.034). CONCLUSION: Six HIT sessions improved cardiorespiratory performance in both groups and increased CHOox in insulin-sensitive obese adolescents, suggesting its utility for increasing physical fitness and controlling glycemia in these population groups.


Cardiorespiratory Fitness , High-Intensity Interval Training , Pediatric Obesity , Adolescent , Cardiorespiratory Fitness/physiology , Humans , Insulin , Oxygen Consumption , Physical Fitness
3.
Nutrients ; 14(1)2021 Dec 23.
Article En | MEDLINE | ID: mdl-35010928

Sarcopenia is one of the main issues associated with the process of aging. Characterized by muscle mass loss, it is triggered by several conditions, including sedentary habits and negative net protein balance. According to World Health Organization, it is expected a 38% increase in older individuals by 2025. Therefore, it is noteworthy to establish recommendations to prevent sarcopenia and several events and comorbidities associated with this health issue condition. In this review, we discuss the role of these factors, prevention strategies, and recommendations, with a focus on protein intake and exercise.


Aging , Dietary Proteins/administration & dosage , Exercise , Sarcopenia/prevention & control , Aged , Aged, 80 and over , Diet/methods , Female , Gastrointestinal Microbiome , Humans , Life Style , Male , Muscle Strength , Muscle, Skeletal/metabolism , Nutritional Status , Recommended Dietary Allowances , Sedentary Behavior
4.
Front Sports Act Living ; 2: 574854, 2020.
Article En | MEDLINE | ID: mdl-33345139

Caffeine is one of the most studied supplements in the world. Studies correlate its use to increased exercise performance in endurance activities, as well as its possible ergogenic effects for both intermittent and strength activities. Recent findings show that caffeine may increase or decrease exercise performance. These antagonist responses may occur even when using the same dosage and for individuals with the same characteristics, making it challenging to explain caffeine's impact and applicability. This review article provides an analytic look at studies involving the use of caffeine for human physical performance, and addresses factors that could influence the ergogenic effects of caffeine on different proposed activities. These factors subdivide into caffeine effects, daily habits, physiological factors, and genetic factors. Each variable has been focused on by discussions to research related to caffeine. A better understanding and control of these variables should be considered in future research into personalized nutritional strategies.

5.
Exp Physiol ; 105(9): 1470-1490, 2020 09.
Article En | MEDLINE | ID: mdl-32613697

NEW FINDINGS: What is the topic of this review? A meta-analysis of the efficacy of high intensity interval training (HIIT) in reducing weight, total fat mass (FM) and (intra)-abdominal FM in normal-weight and overweight/obese women before and after menopause. What advances does it highlight? HIIT programmes in women significantly decrease body weight and total and abdominal FM. Their effects are more evident in pre- than in postmenopausal women. Cycling HIIT seems more effective than running, especially in postmenopausal women, and training interventions longer than 8 weeks comprising three sessions a week should be promoted. ABSTRACT: High-intensity interval training (HIIT) is a stimulating modality for reducing body weight and adipose tissue. The purpose of this meta-analysis was to assess the efficacy of HIIT in reducing weight, total fat mass (FM) and (intra)-abdominal FM in normal-weight and overweight/obese women before and after menopause. A structured electronic search was performed to find all publications relevant to our review. Stratified analyses were made of hormonal status (pre- vs. postmenopausal state), weight, HIIT modalities (cycling vs. running), programme duration (< or ≥8 weeks) and the methods used to measure body composition (dual-energy X-ray absorptiometry vs. computed tomography, Magnetic Resonance Imaging and others). A total of 38 studies involving 959 subjects were included. Our meta-analysis showed that overall HIIT programmes significantly decrease weight, total and abdominal FM in women. Both normal weight and overweight/obese women lost total FM after HIIT protocols whereas HIIT was only effective in decreasing abdominal FM in women with excess adiposity. When pre- and postmenopausal women were considered separately, the effect of HIIT on weight, total and abdominal FM were only significant before menopause. Cycling HIIT seemed more effective than running, especially in postmenopausal women, and training interventions longer than 8 weeks comprising three sessions were more efficient. HIIT is a successful strategy to lose weight and FM in normal weight and overweight/obese women. However, further studies are still needed to draw meaningful conclusions about the real effectiveness of HIIT protocols in postmenopausal women.


Body Composition , High-Intensity Interval Training , Intra-Abdominal Fat , Weight Loss , Adult , Aged , Female , Humans , Menopause , Middle Aged , Obesity/therapy , Overweight/therapy , Young Adult
6.
Ann Hum Genet ; 84(2): 141-150, 2020 03.
Article En | MEDLINE | ID: mdl-31571205

The purpose of the present study was to explore the ability of the total genotype score (TGS) for evaluation of the polygenic profile of elite athletes. Data from a Brazilian athlete cohort were used in this study, which included 368 athletes and 818 nonathletes. The TGS targeted to power athletes was computed using from two to 10 associated polymorphisms. In all models, the power group showed a higher TGS mean compared to the nonathlete group. In particular, scores using more associated polymorphisms showed stronger differences (P < 0.0001). Moreover, the more polymorphisms included in the score, the greater its discriminatory power. The frequency distribution of individuals according to the TGS computed using 10 associated polymorphisms showed that both the power group and the replication group were overrepresented in scores ≥60.0 (P < 0.0075). Individuals with a score ≥60.0 had an increased odds ratio (OR) of being an elite athlete compared to the nonathlete group (OR > 2.03; P < 0.006), although there were athletes with TGS values ranging from 15.0 to 90.0. By setting 60.0 as the cutoff point, the sensitivity and specificity of the TGS was approximately 30% and 82.5%, respectively. In conclusion, the TGS computed using 10 associated polymorphisms proved to be effective in discriminating the target athlete group, but with limited accuracy as evidenced by its sensitivity rate.


Athletes/statistics & numerical data , Physical Endurance/genetics , Polymorphism, Single Nucleotide , Adult , Brazil , Case-Control Studies , Cohort Studies , Cross-Sectional Studies , Female , Follow-Up Studies , Gene Frequency , Genotype , Humans , Male , Phenotype , Young Adult
8.
Nutrition ; 61: 99-104, 2019 05.
Article En | MEDLINE | ID: mdl-30708260

OBJECTIVES: This study aimed to investigate the effects of creatine (Cr) supplementation on biomechanical parameters related to shock attenuation during a session of high-intensity interval training (HIIT). METHODS: A single-blinded, placebo-controlled, crossover design was adopted to test eight male elite soccer players during HIIT sessions under two conditions: after placebo supplementation and after Cr supplementation. HIIT test sessions consisted of an intermittent test (five bouts of running) with a constant load applied until exhaustion was reached. The vertical component of ground reaction force and electromyography data were recorded by Gaitway and Lynx-EMG Systems, respectively. Heart rate, rated perceived exertion (Borg's Scale) and lactate concentration information were also obtained. RESULTS: Cr supplementation did not affect heart rate, rated perceived exertion, and lactate concentration. Decreased values of magnitude of the first peak of the vertical component of ground reaction force (17.2-24.2%) and impulse of the first 50 ms (Imp50; 34.3%) were observed for Cr, but higher values of time to reach the first peak were detected for Cr compared with placebo. Significant modifications in muscle activation were also observed, mainly in the pre-activation phase, and changes were observed in intermediary bouts. CONCLUSIONS: Cr supplementation has the potential to influence biomechanical parameters related to impact control during a single session of HIIT based on running. In particular, the findings of the current study indicate possible improvements in shock attenuation and a safer practice of HIIT under Cr supplementation.


Creatine/administration & dosage , Dietary Supplements , High-Intensity Interval Training , Physical Exertion/drug effects , Soccer/physiology , Adolescent , Biomechanical Phenomena , Cross-Over Studies , Heart Rate/drug effects , Humans , Lactic Acid/metabolism , Male , Single-Blind Method , Young Adult
9.
Nutrition ; 60: 66-69, 2019 04.
Article En | MEDLINE | ID: mdl-30529188

The relevance of vitamin D to skeletal muscle metabolism has been highlighted in recent years. The interest arises from the important findings of studies demonstrating multiple effects of vitamin D on this tissue, which can be divided into genomic (direct effects) and non-genomic effects (indirect effects). Another important aspect to be considered in the study of vitamin D and muscle fiber metabolism is related to different expression of vitamin D receptor (VDR), which varies in muscle tissue depending on age, sex, and pathology. The correlation between low circulating levels of vitamin D and muscle metabolism disorders is documented in various contexts, including muscle recovery, atrophy, sarcopenia, and cachexia. The aim of this review was to analyze recent results of both in vitro and in vivo studies to address the relationship between vitamin D and skeletal muscle biology. The words muscle atrophy, muscle hypertrophy, sarcopenia, and cachexia were crossed over with vitamin D in a Pubmed search. All original contributions, along with reviews on the topic, were included, and no publications in the past 10 y were discarded. The papers retrieved different topics such as vitamin D in skeletal muscle; vitamin D in circulation; vitamin D, sarcopenia, and muscle atrophy; vitamin D and cachexia; and vitamin D and muscle recovery.


Cachexia/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Sarcopenia/metabolism , Vitamin D/metabolism , Humans , Hypertrophy/metabolism , Receptors, Calcitriol/metabolism
10.
Nutrition ; 60: 147-151, 2019 04.
Article En | MEDLINE | ID: mdl-30586658

Although current guidelines for obesity treatment endorse lifestyle modifications to achieve weight loss, energy-restricted diets are still the most commonly used method for the management of overweight. Diet restriction, however, not only is ineffective in promoting long-term weight loss but also may have more costs than benefits, predisposing the individual to fat regain. Several physiological and psychological mechanisms protect the body against starvation and explain how food restriction can promote paradoxically the opposite of what it is planned to achieve, triggering changes in energy metabolism, endocrine function and, thus, body composition. New approaches that focus on behavioral treatment without diet restriction, such as nutritional coaching, are showing strong growth that arises as an innovative way to create sustainable and effective lifestyle changes.


Diet, Reducing/methods , Mentoring/methods , Obesity/therapy , Energy Metabolism , Humans , Life Style , Obesity/metabolism , Weight Loss/physiology
11.
Am J Lifestyle Med ; 12(2): 160-165, 2018.
Article En | MEDLINE | ID: mdl-30202388

Thousands of dollars are spent today with policies encouraging physical activity and healthy eating, but nutritional consultation per se has continuously failed to yield consistent and lasting results. The aim of this case report is to detail and evaluate nutritional coaching (employing health coaching techniques) in promoting lifestyle changes, enabling improvement of nutritional and body composition associated parameters. The patient in this study had previously engaged in a series of different diet regimens, all of which failed in achieving the proposed aim. After 12 nutritional coaching sessions (one per week) with the strategy presented herein, reductions in body fat mass and in total body weight were attained. Nutritional habits also improved, as the patient showed decreased total energy intake, decreased fat intake, and increased fiber ingestion. Daily physical activity and energy expenditure were enhanced. The coaching program was able to induce immediate health benefits using a strategy with the patient at the core of promoting his own lifestyle changes. In conclusion, the nutritional coaching strategy detailed was effective at helping our patient develop new eating patterns and improve related health parameters.

12.
Int J Sport Nutr Exerc Metab ; 27(6): 533-542, 2017 Dec.
Article En | MEDLINE | ID: mdl-28871847

Carnosine (ß-alanyl-L-histidine), abundantly found in skeletal muscle, plays an important role during exercise, especially for high-intensity contractions. Variability in muscle carnosine content between individuals exists and may also be explained by different genetic bases, although no study has addressed the association of polymorphisms in genes related to carnosine metabolism in athletes. This study aimed to investigate the frequency of single nucleotide polymorphisms (SNPs) in the carnosinase genes (CNDP1 and CNDP2) in a large Brazilian cohort of athletes and nonathletes. Eight SNPs were compared between a representative cohort of elite athletes from Brazil (n = 908) and a paired group of nonathletes (n = 967). The athletes were stratified into three groups: endurance (n = 328), power (n = 415), and combat (n = 165). The CNDP2 rs6566810 (A/A genotype) is overrepresented in endurance athletes, but only in international-level endurance athletes. Three SNPs (CNDP2 rs3764509, CNDP2-CNDP1 rs2346061, and CNDP1 rs2887) were overrepresented in power athletes compared with nonathletes. Carriers of the minor allele had an increased odds ratio of being a power athlete. For the rs2346061, no significant difference was observed in genotype frequencies between power and combat sports athletes, but for rs2887 the power and combat groups showed an inverse genotype distribution. In conclusion, we found that minor alleles carriers for CNDP2 rs3764509 (G-allele), CNDP2-CNDP1 rs2346061 (C-allele), and CNDP1 rs2887 (A-allele) are more likely to be a power athlete. These polymorphisms may be novel genetic markers for power athletes. Furthermore, these results are suggestive of a distinct CNDP genotype for sporting development.


Athletes , Dipeptidases/genetics , Polymorphism, Single Nucleotide , Adult , Athletic Performance , Brazil , Case-Control Studies , Cohort Studies , Female , Genotype , Humans , Male , Young Adult
13.
Amino Acids ; 49(1): 33-47, 2017 01.
Article En | MEDLINE | ID: mdl-27807658

Supplementation with whey and other dietary protein, mainly associated with exercise training, has been proposed to be beneficial for the elderly to gain and maintain lean body mass and improve health parameters. The main objective of this review is to examine the evidence provided by the scientific literature indicating benefit from such supplementation and to define the likely best strategy of protein uptake for optimal objectified results in the elderly. Overall, it appears that an intake of approximately 0.4 g protein/kg BW per meal thus representing 1.2-1.6 g protein/kg BW/day may be recommended taking into account potential anabolic resistance. The losses of the skeletal muscle mass contribute to lower the capacity to perform activities in daily living, emphasizing that an optimal protein consumption may represent an important parameter to preserve independence and contribute to health status. However, it is worth noting that the maximal intake of protein with no adverse effect is not known, and that high levels of protein intake is associated with increased transfer of protein to the colon with potential deleterious effects. Thus, it is important to examine in each individual case the benefit that can be expected from supplementation with whey protein, taking into account the usual protein dietary intake.


Aging/metabolism , Dietary Proteins/administration & dosage , Dietary Supplements , Muscle, Skeletal/metabolism , Sarcopenia/diet therapy , Whey Proteins/administration & dosage , Activities of Daily Living , Aged , Aging/pathology , Amino Acids, Essential/administration & dosage , Amino Acids, Essential/metabolism , Body Composition , Dietary Proteins/metabolism , Humans , Muscle, Skeletal/pathology , Recommended Dietary Allowances , Resistance Training , Sarcopenia/metabolism , Sarcopenia/pathology , Sarcopenia/prevention & control , Whey Proteins/metabolism
14.
Life Sci ; 163: 11-22, 2016 Oct 15.
Article En | MEDLINE | ID: mdl-27575705

AIMS: Resistance exercise training (RET) has been adopted as non-pharmacological anti-catabolic strategy. However, the role of RET to counteract cancer cachexia is still speculative. This study aimed to verify whether short-term RET would counteract skeletal muscle wasting in a severe cancer cachexia rat model. MAIN METHODS: Wistar rats were randomly allocated into four experimental groups; 1) untrained control rats (control), 2) rats submitted to RET (control+RET), 3) untrained rats injected with Walker 256 tumor cells in the bone marrow (tumor) and 4) rats injected with Walker 256 tumor cells in the bone marrow and submitted to RET (tumor+RET). KEY FINDINGS: Tumor group displayed skeletal muscle atrophy fifteen days post tumor cells injection as assessed by plantaris (-20.5%) and EDL (-20.0%) muscle mass. EDL atrophy was confirmed showing 43.8% decline in the fiber cross sectional area. Even though RET increased the lactate dehydrogenase protein content and fully restored phosphorylated form of 4EBP-1 to the control levels in skeletal muscle, it failed to rescue muscle morphology in tumor-bearing rats. Indeed, RET did not mitigated loss of muscle function, anorexia, tumor growth or mortality rate. However, loss of strength capacity (assessed by 1-RM test performance) demonstrated a negative correlation with rats' survival (p=0.02; r=0.40), suggesting that loss of strength capacity might predict cancer mortality. SIGNIFICANCE: These results demonstrated that bone marrow injection of Walker 256 tumor cells in rats induces cancer cachexia, strength capacity is associated with cancer survival and short-term RET promotes only modest effects during cachexia progression.


Cachexia/complications , Cachexia/therapy , Disease Progression , Muscular Atrophy/complications , Muscular Atrophy/therapy , Resistance Training , Adaptor Proteins, Signal Transducing/metabolism , Animals , Anorexia/therapy , Cell Line, Tumor , L-Lactate Dehydrogenase/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Neoplasms/complications , Neoplasms/therapy , Rats , Rats, Wistar , Survival Rate
15.
Eur J Appl Physiol ; 114(8): 1749-55, 2014 Aug.
Article En | MEDLINE | ID: mdl-24840857

PURPOSE: To investigate the effect of creatine (CR) supplementation on the acute interference induced by aerobic exercise on subsequent maximum dynamic strength (1RM) and strength endurance (SE, total number of repetitions) performance. METHODS: Thirty-two recreationally strength-trained men were submitted to a graded exercise test to determine maximal oxygen consumption (VO2max: 41.56 ± 5.24 ml kg(-1) min(-1)), anaerobic threshold velocity (ATv: 8.3 ± 1.18 km h(-1)), and baseline performance (control) on the 1RM and SE (4 × 80 % 1RM to failure) tests. After the control tests, participants were randomly assigned to either a CR (20 g day(-1) for 7 days followed by 5 g day(-1) throughout the study) or a placebo (PL-dextrose) group, and then completed 4 experimental sessions, consisting of a 5-km run on a treadmill either continuously (90 % ATv) or intermittently (1:1 min at vVO2max) followed by either a leg- or bench-press SE/1RM test. RESULTS: CR was able to maintain the leg-press SE performance after the intermittent aerobic exercise when compared with C (p > 0.05). On the other hand, the PL group showed a significant decrease in leg-press SE (p ≤ 0.05). CR supplementation significantly increased bench-press SE after both aerobic exercise modes, while the bench-press SE was not affected by either mode of aerobic exercise in the PL group. Although small increases in 1RM were observed after either continuous (bench press and leg press) or intermittent (bench press) aerobic exercise in the CR group, they were within the range of variability of the measurement. The PL group only maintained their 1RM. CONCLUSIONS: In conclusion, the acute interference effect on strength performance observed in concurrent exercise may be counteracted by CR supplementation.


Anaerobic Threshold/drug effects , Creatine/pharmacology , Exercise Tolerance/drug effects , Exercise , Adult , Creatine/administration & dosage , Dietary Supplements , Humans , Male
16.
J Cachexia Sarcopenia Muscle ; 5(2): 105-10, 2014 Jun.
Article En | MEDLINE | ID: mdl-24676930

Cancer cachexia is a complex multifactorial syndrome characterized by loss of skeletal muscle mass (with or without loss of fat mass) that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment. Recently, some amino acids and other amine dietary supplements have been highlighted in medical field due to positive effects upon diseases evolving skeletal muscle atrophy. Therefore, the aim of this brief review is to discuss the putative application of amines as dietary supplements to counteract skeletal muscle wasting on cancer cachexia. Specifically, we focus in two nutritional supplements: (1) branched-chain amino acids (BCAAs) and (2) creatine. Both BCAAs and creatine may attenuate proteolysis and enhance proteins synthesis in skeletal muscle. Although more experimental studies and clinical trials are still necessary to elucidate this therapeutic application, several evidences have demonstrated that amines supplementation is a promising coadjuvant treatment to cancer cachexia.

17.
Amino Acids ; 46(5): 1207-15, 2014 May.
Article En | MEDLINE | ID: mdl-24500111

Recent investigations have suggested that highly trained athletes may be less responsive to the ergogenic effects of ß-alanine (BA) supplementation than recreationally active individuals due to their elevated muscle buffering capacity. We investigated whether training status influences the effect of BA on repeated Wingate performance. Forty young males were divided into two groups according to their training status (trained: T, and non-trained: NT cyclists) and were randomly allocated to BA and a dextrose-based placebo (PL) groups, providing four experimental conditions: NTPL, NTBA, TPL, TBA. BA (6.4 g day(-1)) or PL was ingested for 4 weeks, with participants completing four 30-s lower-body Wingate bouts, separated by 3 min, before and after supplementation. Total work done was significantly increased following supplementation in both NTBA (p = 0.03) and TBA (p = 0.002), and it was significantly reduced in NTPL (p = 0.03) with no difference for TPL (p = 0.73). BA supplementation increased mean power output (MPO) in bout 4 for the NTBA group (p = 0.0004) and in bouts 1, 2 and 4 for the TBA group (p ≤ 0.05). No differences were observed in MPO for NTPL and TPL. BA supplementation was effective at improving repeated high-intensity cycling performance in both trained and non-trained individuals, highlighting the efficacy of BA as an ergogenic aid for high-intensity exercise regardless of the training status of the individual.


Athletic Performance/physiology , Dietary Supplements/analysis , beta-Alanine/metabolism , Athletes , Bicycling , Humans , Male , Physical Endurance
18.
Int J Sport Nutr Exerc Metab ; 24(3): 286-95, 2014 Jun.
Article En | MEDLINE | ID: mdl-24296517

We investigated the effects of low- and high-dose calcium lactate supplementation on blood pH and bicarbonate (Study A) and on repeated high-intensity performance (Study B). In Study A, 10 young, physically active men (age: 24 ± 2.5 years; weight: 79.2 ± 9.45 kg; height: 1.79 ± 0.06 m) were assigned to acutely receive three different treatments, in a crossover fashion: high-dose calcium lactate (HD: 300 mg · kg(-1) body mass), low-dose calcium lactate (LD: 150 mg · kg(-1) body mass) and placebo (PL). During each visit, participants received one of these treatments and were assessed for blood pH and bicarbonate 0, 60, 90, 120, 150, 180, and 240 min following ingestion. In Study B, 12 young male participants (age: 26 ± 4.5 years; weight: 82.0 ± 11.0 kg; height: 1.81 ± 0.07 m) received the same treatments of Study A. Ninety minutes after ingestion, participants underwent 3 bouts of the upper-body Wingate test and were assessed for blood pH and bicarbonate 0 and 90 min following ingestion and immediately after exercise. In Study A, both HD and LD promoted slight but significant increases in blood bicarbonate (31.47 ± 1.57 and 31.69 ± 1.04 mmol · L(-1, respectively) and pH levels (7.36 ± 0.02 and 7.36 ± 0.01, respectively), with no effect of PL. In Study B, total work done, peak power, mean power output were not affected by treatments. In conclusion, low- and high-dose calcium lactate supplementation induced similar, yet very discrete, increases in blood pH and bicarbonate, which were not sufficiently large to improve repeated high-intensity performance.


Bicarbonates/blood , Calcium Compounds/pharmacology , Dietary Supplements , Exercise/physiology , Lactates/pharmacology , Physical Exertion/drug effects , Adult , Calcium Compounds/administration & dosage , Cross-Over Studies , Exercise Test , Humans , Hydrogen-Ion Concentration , Lactates/administration & dosage , Male , Young Adult
19.
Nutrition ; 29(11-12): 1388-94, 2013.
Article En | MEDLINE | ID: mdl-24103516

OBJECTIVE: The aim of this study was to evaluate the effects of the mixture of branched-chain amino acids (BCAAs) supplementation compared with leucine administered orally on muscle biochemical parameters of trained rats submitted to an exercise-induced protocol of glycogen depletion. METHODS: After 6 wk of swimming exercise, 8 wk-old (250 g, adult) male Wistar rats were randomly divided into three experimental groups (n = 8 per group): the mixture of BCAAs (BCAAs), leucine (LEU), and placebo (PLA). All groups were submitted to swimming exercise for 6 wk and supplemented with either the mixture of BCAAs, leucine, or placebo during the last week of training. At week 7 of the protocol, the rats were submitted to an intermittent, progressive swimming test until exhaustion and sacrificed. Muscle gastrocnemius and liver were depicted to determine total glycogen, tricarboxylic acid cycle (TCA) intermediates, and enzymatic activities. Statistical evaluation was performed by one-way analysis of variance with Tukey post hoc test. RESULTS: Both muscle and liver glycogen degradation ratio were significantly higher in the mixture of BCAAs group compared to the PLA group (P < 0.05) and the LEU group presented decreased liver glycogen degradation ratio compared with the mixture of BCAAs group (P < 0.05). Both muscle and liver glycogen content were significantly spared in the mixture of BCAAs and LEU groups compared to the PLA group (P < 0.01). A performance test demonstrated that LEU supplementation enhanced resistance to exhaustion compared to the mixture of BCAAs (P < 0.001), however, no difference was found when LEU supplementation was compared to PLA (P > 0.05) Muscle citrate content was significantly higher in the mixture of BCAAs group compared with the PLA group (P < 0.001). Muscle malate content was significantly elevated in the mixture of BCAAs group compared with both the PLA (P < 0.001) and LEU groups (P < 0.001). BCAT activity was significantly reduced in the mixture of BCAAs supplementation group compared with the LEU group (P < 0.001). CONCLUSION: Leucine supplementation improved performance compared with the mixture of BCAAs supplementation, sparing muscle glycogen stores despite the augmentation of some TCA intermediate concentrations on the left side of the TCA cycle.


Amino Acids, Branched-Chain/administration & dosage , Dietary Supplements , Fatigue/drug therapy , Leucine/administration & dosage , Liver Glycogen/metabolism , Administration, Oral , Animals , Fatigue/physiopathology , Liver/drug effects , Liver/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Rats , Rats, Wistar , Swimming/physiology
20.
Appl Physiol Nutr Metab ; 38(5): 525-32, 2013 May.
Article En | MEDLINE | ID: mdl-23668760

We investigated the effect of beta-alanine (BA) alone (study A) and in combination with sodium bicarbonate (SB) (study B) on 100- and 200-m swimming performance. In study A, 16 swimmers were assigned to receive either BA (3.2 g·day(-1) for 1 week and 6.4 g·day(-1) for 4 weeks) or placebo (PL; dextrose). At baseline and after 5 weeks of supplementation, 100- and 200-m races were completed. In study B, 14 were assigned to receive either BA (3.2 g·day(-1) for 1 week and 6.4 g·day(-1) for 3 weeks) or PL. Time trials were performed once before and twice after supplementation (with PL and SB), in a crossover fashion, providing 4 conditions: PL-PL, PL-SB, BA-PL, and BA-SB. In study A, BA supplementation improved 100- and 200-m time-trial performance by 2.1% (p = 0.029) and 2.0% (p = 0.0008), respectively. In study B, 200-m time-trial performance improved in all conditions, compared with presupplementation, except the PL-PL condition (PL-SB, +2.3%; BA-PL, +1.5%; BA-SB, +2.13% (p < 0.05)). BA-SB was not different from BA-PL (p = 0.21), but the probability of a positive effect was 78.5%. In the 100-m time-trial, only a within-group effect for SB was observed in the PL-SB (p = 0.022) and BA-SB (p = 0.051) conditions. However, 6 of 7 athletes swam faster after BA supplementation. The probability of BA having a positive effect was 65.2%; when SB was added to BA, the probability was 71.8%. BA and SB supplementation improved 100- and 200-m swimming performance. The coingestion of BA and SB induced a further nonsignificant improvement in performance.


Sodium Bicarbonate , Swimming , Athletes , Dietary Supplements , Double-Blind Method , Humans , Performance-Enhancing Substances/administration & dosage , beta-Alanine
...