Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Nat Commun ; 15(1): 598, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38238312

In the framework of optical quantum computing and communications, a major objective consists in building receiving nodes implementing conditional operations on incoming photons, using a single stationary qubit. In particular, the quest for scalable nodes motivated the development of cavity-enhanced spin-photon interfaces with solid-state emitters. An important challenge remains, however, to produce a stable, controllable, spin-dependent photon state, in a deterministic way. Here we use an electrically-contacted pillar-based cavity, embedding a single InGaAs quantum dot, to demonstrate giant polarisation rotations induced on reflected photons by a single electron spin. A complete tomography approach is introduced to extrapolate the output polarisation Stokes vector, conditioned by a specific spin state, in presence of spin and charge fluctuations. We experimentally approach polarisation states conditionally rotated by [Formula: see text], π, and [Formula: see text] in the Poincaré sphere with extrapolated fidelities of (97 ± 1) %, (84 ± 7) %, and (90 ± 8) %, respectively. We find that an enhanced light-matter coupling, together with limited cavity birefringence and reduced spectral fluctuations, allow targeting most conditional rotations in the Poincaré sphere, with a control both in longitude and latitude. Such polarisation control may prove crucial to adapt spin-photon interfaces to various configurations and protocols for quantum information.

2.
Phys Rev Lett ; 129(5): 057401, 2022 Jul 29.
Article En | MEDLINE | ID: mdl-35960559

The excitonic fine structure plays a key role for the quantum light generated by semiconductor quantum dots, both for entangled photon pairs and single photons. Controlling the excitonic fine structure has been demonstrated using electric, magnetic, or strain fields, but not for quantum dots in optical cavities, a key requirement to obtain high source efficiency and near-unity photon indistinguishability. Here, we demonstrate the control of the fine structure splitting for quantum dots embedded in micropillar cavities. We propose and implement a scheme based on remote electrical contacts connected to the pillar cavity through narrow ridges. Numerical simulations show that such a geometry allows for a three-dimensional control of the electrical field. We experimentally demonstrate tuning and reproducible canceling of the fine structure, a crucial step for the reproducibility of quantum light source technology.

3.
Phys Rev Lett ; 126(23): 233601, 2021 Jun 11.
Article En | MEDLINE | ID: mdl-34170172

Semiconductor quantum dots in cavities are promising single-photon sources. Here, we present a path to deterministic operation, by harnessing the intrinsic linear dipole in a neutral quantum dot via phonon-assisted excitation. This enables emission of fully polarized single photons, with a measured degree of linear polarization up to 0.994±0.007, and high population inversion-85% as high as resonant excitation. We demonstrate a single-photon source with a polarized first lens brightness of 0.50±0.01, a single-photon purity of 0.954±0.001, and single-photon indistinguishability of 0.909±0.004.

4.
Phys Rev Lett ; 126(6): 063602, 2021 Feb 12.
Article En | MEDLINE | ID: mdl-33635709

Hong-Ou-Mandel interference is a cornerstone of optical quantum technologies. We explore both theoretically and experimentally how unwanted multiphoton components of single-photon sources affect the interference visibility, and find that the overlap between the single photons and the noise photons significantly impacts the interference. We apply our approach to quantum dot single-photon sources to access the mean wave packet overlap of the single-photon component. This study provides a consistent platform with which to diagnose the limitations of current single-photon sources on the route towards the ideal device.

5.
Nat Commun ; 11(1): 5501, 2020 Oct 30.
Article En | MEDLINE | ID: mdl-33127924

Light states composed of multiple entangled photons-such as cluster states-are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology-a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes.

6.
Opt Express ; 25(20): 24437-24447, 2017 Oct 02.
Article En | MEDLINE | ID: mdl-29041388

Recent experiments demonstrated that GaAs/AlAs based micropillar cavities are promising systems for quantum optomechanics, allowing the simultaneous three-dimensional confinement of near-infrared photons and acoustic phonons in the 18-100 GHz range. Here, we investigate through numerical simulations the optomechanical properties of this new platform. We evidence how the Poisson's ratio and semiconductor/vacuum boundary conditions lead to very distinct features in the mechanical and optical three-dimensional confinement. We find a strong dependence of the mechanical quality factor and strain distribution on the micropillar radius, in great contrast to what is predicted and observed in the optical domain. The derived optomechanical coupling constants g0 reach ultra-large values in the 106 rad/s range.

7.
Phys Rev Lett ; 118(26): 263901, 2017 Jun 30.
Article En | MEDLINE | ID: mdl-28707938

Strong confinement, in all dimensions, and high mechanical frequencies are highly desirable for quantum optomechanical applications. We show that GaAs/AlAs micropillar cavities fully confine not only photons but also extremely high frequency (19-95 GHz) acoustic phonons. A strong increase of the optomechanical coupling upon reducing the pillar size is observed, together with record room-temperature Q-frequency products of 10^{14}. These mechanical resonators can integrate quantum emitters or polariton condensates, opening exciting perspectives at the interface with nonlinear and quantum optics.

8.
Nat Commun ; 7: 11986, 2016 06 17.
Article En | MEDLINE | ID: mdl-27312189

In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.

9.
Nat Commun ; 5: 3240, 2014.
Article En | MEDLINE | ID: mdl-24496223

The scalability of a quantum network based on semiconductor quantum dots lies in the possibility of having an electrical control of the quantum dot state as well as controlling its spontaneous emission. The technological challenge is then to define electrical contacts on photonic microstructures optimally coupled to a single quantum emitter. Here we present a novel photonic structure and a technology allowing the deterministic implementation of electrical control for a quantum dot in a microcavity. The device consists of a micropillar connected to a planar cavity through one-dimensional wires; confined optical modes are evidenced with quality factors as high as 33,000. We develop an advanced in-situ lithography technique and demonstrate the deterministic spatial and spectral coupling of a single quantum dot to the connected pillar cavity. Combining this cavity design and technology with a diode structure, we demonstrate a deterministic and electrically tunable single-photon source with an extraction efficiency of around 53 ± 9%.

10.
Nat Commun ; 4: 1425, 2013.
Article En | MEDLINE | ID: mdl-23385570

Bright sources of indistinguishable single photons are strongly needed for the scalability of quantum information processing. Semiconductor quantum dots are promising systems to build such sources. Several works demonstrated emission of indistinguishable photons while others proposed various approaches to efficiently collect them. Here we combine both properties and report on the fabrication of ultrabright sources of indistinguishable single photons, thanks to deterministic positioning of single quantum dots in well-designed pillar cavities. Brightness as high as 0.79±0.08 collected photon per pulse is demonstrated. The indistinguishability of the photons is investigated as a function of the source brightness and the excitation conditions. We show that a two-laser excitation scheme allows reducing the fluctuations of the quantum dot electrostatic environment under high pumping conditions. With this method, we obtain 82±10% indistinguishability for a brightness as large as 0.65±0.06 collected photon per pulse.

11.
Phys Rev Lett ; 109(16): 166806, 2012 Oct 19.
Article En | MEDLINE | ID: mdl-23215114

Giant optical nonlinearity is observed under both continuous wave and pulsed excitation in a deterministically coupled quantum dot-micropillar system, in a pronounced strong-coupling regime. Using absolute reflectivity measurements we determine the critical intracavity photon number as well as the input and output coupling efficiencies of the device. Thanks to a near-unity input-coupling efficiency, we demonstrate a record nonlinearity threshold of only 8 incident photons per pulse. The output-coupling efficiency is found to strongly influence this nonlinearity threshold. We show how the fundamental limit of single-photon nonlinearity can be attained in realistic devices, which would provide an effective interaction between two coincident single-photons.

12.
Phys Rev Lett ; 103(2): 027401, 2009 Jul 10.
Article En | MEDLINE | ID: mdl-19659240

The origin of the emission within the optical mode of a coupled quantum dot-micropillar system is investigated. Time-resolved photoluminescence is performed on a large number of deterministically coupled devices in a wide range of temperature and detuning. The emission within the cavity mode is found to exhibit the same dynamics as the spectrally closest quantum dot state. Our observations indicate that fast dephasing of the quantum dot state is responsible for the emission within the cavity mode. An explanation for recent photon correlation measurements reported on similar systems is proposed.

13.
Phys Rev Lett ; 101(26): 267404, 2008 Dec 31.
Article En | MEDLINE | ID: mdl-19437672

Using far-field optical lithography, a single quantum dot is positioned within a pillar microcavity with a 50 nm accuracy. The lithography is performed in situ at 10 K while measuring the quantum dot emission. Deterministic spectral and spatial matching of the cavity-dot system is achieved in a single step process and evidenced by the observation of strong Purcell effect. Deterministic coupling of two quantum dots to the same optical mode is achieved, a milestone for quantum computing.

14.
Phys Rev Lett ; 97(17): 173901, 2006 Oct 27.
Article En | MEDLINE | ID: mdl-17155475

We experimentally demonstrate an integrated semiconductor source of counterpropagating twin photons in the telecom range. A pump beam impinging on top of an AlGaAs waveguide generates parametrically two counterpropagating, orthogonally polarized signal/idler guided modes. A 2 mm long waveguide emits at room temperature one average photon pair per pump pulse, with a spectral linewidth of 0.15 nm. The twin character of the emitted photons is ascertained through a time-correlation measurement. This work opens a route towards new guided-wave semiconductor quantum devices.

...